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A B S T R A C T

This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic
field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors
and custom-built devices. The discussion encompasses both standardized and non-standardized measurement
protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights
the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost
measurement devices is observed, commonly referred to as ‘‘sensors’’ or ‘‘sensor nodes’’, that are capable
of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental
surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based
on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-
effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated)
measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive
information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring
uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly
irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and
methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating
the available measurement data.
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1. Introduction

The rapid evolution of wireless communication technologies has
revolutionized the way we connect, communicate, and access infor-
mation. The introduction of fifth-generation (5G) New Radio (NR)
networks in late 2018 promises unprecedented speed, lower latency,
and enhanced connectivity (the ability to handle a larger number of
simultaneous connected devices). One of the major innovations brought
by 5G NR technology is the utilization of active antenna systems,
such as Massive Multiple-Input Multiple-Output (MaMIMO) antennas,
where multiple signal propagation paths (i.e., spatial multiplexing)
can be used to maximize the data transfer rate (Lin et al., 2019).
In MaMIMO a multitude of antenna elements, potentially numbering
in the hundreds (or even thousands), can be employed to focus and
adjust the transmission beam, aiming to optimize the signal reception
at the receiver device. Applications such as the internet of things (IoT),
and autonomous vehicles and robotics need 5G because of the low
latency and high throughput. However, these technological advance-
ments have also raised concerns about potential health risks associated
with possible increased exposure to radio frequency electromagnetic
fields (RF-EMF). In fact, the usage of MaMIMO antennas introduces
a spatiotemporal variability of the radiated field distribution which
depends on the specific use case and scenario (Shikhantsov et al., 2023)
and is for this reason difficult to predict a priori. As the deployment
of 5G NR networks continues to expand globally, comprehending and
monitoring EMF exposure levels have become crucial in ensuring public
safety and addressing potential exposure-effect relations.

The International Commission on Non-Ionizing Radiation protec-
tion (ICNIRP) published exposure limits based on scientifically proven
causal effects (International Commission on Non-Ionizing Radiation
Protection (ICNIRP), 2020), mostly based on short term exposure, such
as the perception of surface electric charge, direct stimulation of nerve
and muscle tissue, and the induction of retinal phosphenes. Studies
focusing on exposures below established limits or utilizing alternative
metrics necessitate epidemiological research to establish meaningful
relationships between exposure and adverse health effects. In case
of medically unexplained physical symptoms or (self-declared) elec-
trosensitivity or rare diseases epidemiological approaches concurrently
monitoring exposure and bioparameters at the individual level is a
necessary addition. In these studies, the subjects act as their own
controls, In contrast to the classic group-level comparisons, as is the
2

case in ecological momentary assessment e.g. Bogers et al. (2018), Bolte
et al. (2019), Van Wel et al. (2017).

The evaluation of RF-EMF personal exposure measurements in hu-
man epidemiological studies has posed a considerable challenge due
to the need to accurately measure individual exposures to reduce the
likelihood of exposure misjudgment (Bhatt et al., 2015; Bolte, 2016).
Epidemiological studies have frequently relied on subjective and less
precise methods for assessing exposure, both in terms of estimating
exposure levels and categorizing study participants as either exposed
or unexposed populations (Brzozek et al., 2019). The choice of ex-
posure assessment tool(s) and the methodology employed in human
epidemiological studies directly impact their reliability. Consequently,
in recent years there has been progress in developing and implement-
ing (sensitive) instruments to characterize the realistic EMF exposure
levels.

Both, the assessment of the exposure and of the health status, in
epidemiological studies should be accurate and objectively measured.
In case the individual exposure is not accurately assessed by personal
measurement devices, so-called exposimeters, but predicted as is the
case in using proxies as the distance to a transmitter, or a single
measurement (Frei et al., 2009), this may lead to a misclassification
of the exposure level (Bhatt et al., 2015; Bolte, 2016). This is often
an underestimation, therefore leading to a weaker correlation, if any,
between exposure and effect. If the health effect is not objectively
based on sensor measurements of bioparameters such as heart rate,
respiratory frequency etc., but by a questionnaire with a likert scale
on perception of pain or mental status, recall bias may occur and the
reporting of the intensity will be very subjective, again leading to a
decrease in the correlation.

At the same time, urban areas are progressively embracing the im-
plementation of intelligent sensor networks to provide all-encompassing
surveillance of diverse facets of city life, including variables like noise
levels, air quality, temperature and EMF exposure (Díez et al., 2017).
These sensor networks are defined by their cost-efficiency and ease of
use, rendering them accessible instruments for monitoring the urban
environment. They are designed to guarantee uninterrupted wireless
connectivity and seamless integration with the IoT (Li et al., 2018;
Wang et al., 2018). A significant benefit of these geographically dis-
tributed sensor networks lies in their capacity to provide extensive
and continuous data on RF-EMF exposure across multiple locations.
Governments and regulatory authorities can leverage on these networks
to assess and monitor RF-EMF levels over extended periods, thus
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facilitating a more nuanced understanding of electromagnetic field
exposure in urban settings.

In recent years, several European countries have embraced the
establishment of stationary RF-EMF exposure monitoring networks. By
leveraging the capabilities of low-cost, user-friendly sensors and RF-
EMF-based wireless communication, cities are taking significant strides
toward creating smarter and more informed urban landscapes. No-
table examples include Spain, Portugal, Greece, Serbia, Italy, Romania,
France, Hungary and Belgium (Díez et al., 2017; Oliveira et al., 2007;
Manassas et al., 2012; Troisi et al., 2008; Apostolidis et al., 2022; Aerts
et al., 2022; Djurić et al., 2022), where initiatives have been undertaken
to deploy sensor networks for the systematic measurement of ambient
RF-EMF exposure levels. These networks contribute to enhance our
awareness of existing RF-EMF exposures and also serve as valuable
resources for policymakers and researchers to make informed decisions
regarding human and environmental protection.

Over the past decade, several studies have been published assessing
environmental and personal EMF exposure globally (mostly in Europe)
for human epidemiological studies (Chiaramello et al., 2019; Sagar
et al., 2017; Ramírez-Vázquez et al., 2023). Although a few studies
have provided reviews on personal RF-EMF exposure measurements
tools (Bhatt et al., 2015; Bolte, 2016; Bhatt et al., 2022), they are
particularly related to previous (i.e.non-5G) technologies. The latest
systematic review (Sagar et al., 2018) on measurement studies of RF-
EMF exposure shows that only a few (5 out of 56) measurement
studies were conducted in developing countries. This indicates the
underutilization of RF-EMF sensors and the inadequacy of exposure
monitoring programs in developing countries despite the similar trend
of telecommunication technology deployment. One of the reasons be-
hind this could be that RF-EMF exposure assessment tools are generally
expensive and therefore are often beyond the reach of developing
countries. Therefore, there is a need of developing relatively low-cost
RF-EMF sensors that can be accessed and deployed more widely.

A rapid deployment of 5G NR technology worldwide and its ram-
ifications in developing 5G-specific assessment tools highlights the
need for reviewing 5G NR exposure assessment and monitoring tools
reflecting the current landscape of 5G NR network deployment and
associated exposure monitoring programs in different contexts. There-
fore, a comprehensive review on 5G NR monitoring tools not only
supports the field of RF-EMF exposure assessment for human protection
but also for emerging need of environmental protection (Karipidis
et al., 2023). The purpose of this review is to undertake an in-depth
examination of 5G NR specific RF-EMF exposure sensors, highlighting
on the advancements, challenges, niches and implications associated
with them.

This study is dedicated to a comprehensive examination of the
instruments featured in the scientific literature for the measurement of
5G RF-EMF exposure. It starts with the basics of exposure guidelines
and the standardized and non-standardized measurement protocols,
followed by measurement device specifications and the fundamentals of
calibration and measurement uncertainty. Then it delves into detailed
descriptions of these instruments and the passive components inte-
grated into their test setups, categorizing them into two main groups:
commercially available devices and custom-built devices employed in
and outside laboratory settings. The document also provides a clear
explanation of their operational mechanisms. Additionally, a special
attention is given to mobile phone applications assessing RF-EMF ex-
posure. Furthermore, cardinal research on human studies using EMF
sensing technologies is presented.

Finally, it is worth noting that various types of EMF exposure
measurement devices serve distinct purposes, each aligned with specific
objectives. Hence, this review offers in-depth discussions on different
scenarios from environmental exposure assessment to check for le-
gal compliance, to microenvironmental exposure levels, to individual
exposure effect assessment in epidemiological studies, and the EMF
3

exposure instruments required. It provides insights into the essential o
performance parameters that guide the development of measurement
equipment tailored specifically for assessing 5G exposure. For space
requirements 5G NR measurement methods are not included in this
review, the interested reader is invited to review (Fellan and Schotten,
2022) for more information on this topic.

2. Methods

To systematically compile relevant literature and perform an effec-
tive synthesis, an extensive search of scientific literature was conducted
for peer-reviewed scientific publications. This survey encompassed a
comprehensive search across prominent academic databases, including
Scopus, Google Scholar, Web of Science, and Medline. The focus of this
survey was primarily on the last decade, ensuring that the collected
literature was not only pertinent but also reflective of the most recent
advancements and insights in the field. The methodology involved
careful screening of articles, abstracts, and keywords to select stud-
ies aligning with the research objectives. Additionally, the reference
lists within the chosen works were further scrutinized including cross
reference check to broaden the scope of the literature review.

A selection of the following keywords has been employed, to iden-
tify the main contributions over the years 2013–2023, for the literature
survey:

• Frequency identification: Frequency Range 1, FR1, Frequency
Range 2, FR2, millimet* wave*, millimet* frequenc*, mmwave,
mm-wave

• Telecommunication system identification: Fifth generation, 5G,
New Radio, 5G NR

• Field definition #1: Exposure, human exposure, personal expo-
sure

• Field definition #2: Measure*, sens*, instrument, device, equip-
ment

In addition, we also searched for any grey literature, such as reports,
vendors information sheet, etc. to get most up-to-date information on
the tools.

3. Fundamentals of EMF measurements

To establish the groundwork for our discussion on the most recent
developments in EMF measurement equipment, it is imperative to
begin by introducing the fundamental aspects of EMF measurements,
which play a critical role in this review. We begin with exposure
guidelines and measurement protocols followed by the specifications of
measurement devices and explain which specifications are considered.

3.1. Exposure guidelines

The exposure guidelines and standards issued by ICNIRP (Inter-
national Commission on Non-Ionizing Radiation Protection (ICNIRP),
2020) and the International Committee on Electromagnetic Safety of
the Institution of Electrical and Electronic Engineers (ICES-IEEE) (IEEE-
ICES, 2019) are determined to protect against potential adverse health
effects which have been scientifically proven, established through eval-
uations of pertinent scientific literature. These guidelines encompass
fundamental constraints on EMF exposure of the human body (or
parts of), which are articulated in quantities associated with potential
adverse short-term health effects, such as rise in temperature. In the
case of high-frequency electromagnetic fields (100 kHz–300 GHz), the
goal of these basic restrictions (in terms of the specific absorption rate
or SAR) is to limit the temperature increase to 1 ◦C for the whole
body, and to 5 ◦C and 2 ◦C, for the limbs and head, respectively
local exposure) (International Commission on Non-Ionizing Radiation
rotection (ICNIRP), 2020).

To ascertain protection of exposed people, an additional safety

r reduction factor is applied, for which a differentiation was made
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Fig. 1. Triaxial dipole antenna example.

etween exposure of the general public (factor of 50) and exposure in
ccupational settings (factor of 10) in which the exposed persons are
upposed to be aware of the potential risks. As SAR (W/kg) can only
e directly measured in the body, the basic restrictions were translated
nto so-called reference levels (root-mean-square (RMS) values) for the
lectric field strength, 𝐸 (V/m), magnetic field strength, 𝐻 (A/m) or for
he plane wave power density, 𝑆 (W/𝑚2), which are measured outside

the body. The translation is such that as long as the reference level is
not exceeded, the basic restriction remains satisfied. The SAR is a time-
averaged quantity and when examining the entire body, this average
is taken over a period of 30 min. However, for localized exposure
(e.g., 10 g of tissue), the averaging time is reduced to 6 min or less.
For local exposure within the 6–300 GHz frequency range, the basic
restriction is 100W∕m2 for workers and 20W∕m2 for the general public,
averaged over a 4 cm2 area.

When conducting EMF measurements for compliance assessment
(e.g., comparing to ICNIRP reference levels or other legal limits), it is
crucial to consider the distance between the measurement setup and
the radiation source. IEC 62232 (IEC 62232:2022, 2022) addresses the
evaluation of RF field strength in the far-field region (Balanis, 2016).
However, when exposure occurs at shorter distances (near field), it
is necessary to measure both electric and magnetic field levels or,
alternatively, revert to the basic restrictions.

The RF power detectors which are used in measurement instruments
produce a DC output that is proportional to the RMS value of the
signal which then sampled with an analog-to-digital converter (ADC)
and is converted into a power level (dBm) using a lookup table within a
standard microcontroller/processor. This power level can subsequently
be converted into an electric field using the antenna factor. Initially,
the power density needs to be computed using the following formula:

𝑆 =
4𝜋𝑃𝑟

𝜆2𝐺
(1)

n which 𝑃𝑟 is the received power (W), 𝜆 is the wavelength in free space,
nd 𝐺 is the gain of the antenna. Then, the magnitude of electric field
ntensity can be calculated by:

𝐸 =
√

𝑆𝜂0 (2)

where 𝜂0 = 120𝜋 is the free space impedance (𝛺).
Moreover, it is assumed that the external field is optimally linked

o the individual. This entails that the assessment of exposure takes
nto account all potential polarizations and propagation directions. To
ccomplish this, the RMS value of the electric or magnetic field strength
re measured using three co-located orthogonal sensors or antenna
lements as illustrated in Fig. 1.

.2. Standardized measurement protocols

Government agencies typically oversee the regulation of EMF gen-
rated by services operating within specific frequency bands. For in-
tance, within the EU, this oversight often involves assessing compli-
nce with the ICNIRP basic exposure restrictions. However, stricter lim-
ts exist in various European countries or regions, initially established
y the 1999/519/EG Council Recommendation on limiting public ex-
osure to electromagnetic fields (0 Hz to 300 GHz) (Publications Office
4

of the European Union, 1999), and the Directive 2013/35/EU (workers
directive) (Publications Office of the European Union, 2013), both
derived from the ICNIRP 1998 guidelines (International Commission on
Non-Ionizing Radiation Protection (ICNIRP), 1998). A practical guide
for EMF measurements to assess human exposure are summed in In-
ternational Telecommunication Union - Radiocommunication Sector
(ITU-R) (2019).

Although the ICNIRP 2020 guidelines (International Commission
on Non-Ionizing Radiation Protection (ICNIRP), 2020) were released
some time ago, they have yet to be officially adopted by the European
Council (EC). Nevertheless, the Scientific Committee on Health, Envi-
ronmental, and Emerging Risks (SCHEER) has recommended EC adop-
tion, and many agencies already implement these guidelines (Scientific
Committee on Health, Environmental, and Emerging Risks (SCHEER),
2023).

Qualified personnel perform RF-EMF measurements using European
harmonized standards, particularly EN 62232 (IEC 62232:2022, 2022)
and EN 50401 (EN 50401, 2017). Isotropic measurements must be con-
ducted with calibrated instruments in accordance with EN 50383 (EN
50383, 2023).

In general, standardized EMF measurements are conducted at spe-
cific fixed locations and at a particular point in time with either
broadband or frequency-selective equipment.

Broadband measurements involve the integration of all emissions
across a wide spectrum, e.g., spanning from 100 kHz to 6 GHz. This
spectrum encompasses signals from various sources, such as broadcast
stations (AM, FM, T-DAB, DVB-T) and mobile phone base stations (2G,
3G, 4G, 5G). It is necessary to extend the frequency range for broad-
band measurements because of the forthcoming deployment of 5G in
the millimeter wave spectrum (FR2 bands, i.e., between 24.25 GHz and
71.00 GHz).

Frequency-selectivemeasurements are conducted at specific bands,
such as those associated with a particular technology or operator. These
measurements serve as a supplementary procedure when broadband
measurements exceed a predefined threshold (e.g. 0.1W∕m2) (IEC
62232:2022, 2022). This measurement type enables the collection of
incident power density within a designated frequency range. Using
the measured value of specific, reference signals per technology, the
maximum potential electromagnetic field at a particular location can be
calculated based on extrapolation (IEC 62232:2022, 2022). Frequency-
selective measurements are performed at specific, fixed locations and
at a particular moment in time.

The RF-EMF levels determined by these measurements represent
a snapshot, influenced increasingly by the behavior of the (cellu-
lar) network, such as the total amount of data traffic, especially in
the latest- and future generations of telecommunications networks.
Therefore, an extrapolation can be carried out based on a frequency-
selective measurement to make a prediction of the maximum possible
electromagnetic field.

In order to assess the average incident power density to which
the body is exposed, ICNIRP 2020 (International Commission on Non-
Ionizing Radiation Protection (ICNIRP), 2020) guidelines recommend
a 30-minute measurement duration. Nevertheless, from a practical
standpoint, it is viable to limit the measurement duration to 6 min,
unless the measured exposure exceeds a certain threshold (e.g., 5% of
the value specified in the ICNIRP guidelines (Anon, 2021a)).

In order to perform these standardized (compliance) EMF measure-
ments, the following considerations can be taken into account (Anon,
2021b):

• Ensure that there are no nearby transmissions originating from
your own devices (e.g., switch mobile phones off or put them in
to airplane mode).

• Ensure that the measurements are performed in the far field from
the emission sources.

• Place the measurement device on a non-conducting (e.g. wooden)

tripod at a height of 150 cm above street level.
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• The measured field value should represent the ‘undisturbed’ field,
free from any human body interference.

• Avoid large conducting objects or surfaces in close proximity to
the measurement device (maintain a distance greater than 0.5 m).

• Be aware of temporal variations in field strength related to actual
traffic conditions.

• The measurement device should employ an RMS detector and
record data.

• Empirically identify the local maximum instantaneous RMS ex-
posure value by conducting a quick scan in the area of interest
(worst-case exposure) using a broadband probe.

• For frequency-selective measurements, select a measurement band
width that is wider than the signal(s) of interest.

• Compare the measurement results with limit values, expressed
as a percentage of exposure relative to the value of ICNIRP
guidelines.

A crucial part of compliance assessment is the measurement un-
ertainty. The estimation of EMF measurement uncertainty is carried
ut following the procedures outlined in EN 50383 (EN 50383, 2023)
nd EN 50413 (EN 50413, 2023). The expanded uncertainty must not
xceed 4 dB at a 95% confidence interval (using an expansion factor
f 1.96) for frequencies up to 6 GHz. The Root Sum of the Squares
RSS) method is employed for calculating uncertainty, considering
ources such as calibration (antenna, cable, receiver), mismatch, and
epeatability. It is worth noting that for frequencies above 6 GHz, this
nformation needs to be updated.

.3. Non-standardized measurement protocols in exposure assessment stud-
es

Besides compliance testing, measuring RF-EMF serves various other
bjectives, including but not limited to: estimating realistic exposure
evels (Liorni et al., 2020), validating numerical models (Beekhuizen
t al., 2013), comparing average exposure levels across different ge-
graphical regions (Velghe et al., 2019), tracking the evolution of
xposure levels over time (Velghe et al., 2019), creating exposure heat
aps for specific areas (Aerts et al., 2018), and evaluating exposure

evels among specific population segments (Eeftens et al., 2018).
For many of these purposes, the measurement techniques and mate-

ials typically employed for compliance testing are not the most suitable
hoices. This can be attributed to a variety of factors, including the
ime required, the cost of specialized measurement equipment, and
heir physical size. In many cases, measurements need to be conducted
t multiple locations, individuals being tested must carry measuring
evices without significant disruption to their daily routines, or mea-
urements have to be performed continuously for extended periods in
ocations where delicate equipment could be at risk of damage.

Hence, to address these challenges, alternative devices have been
eveloped alongside high-end commercial instruments. These alterna-
ive devices can be categorized into three main groups: wearables,
martphone applications, and more affordable sensor nodes.

These devices, along with the measurement protocols they em-
loy, tend to introduce a greater level of measurement uncertainty
hen contrasted with high-end bench-top testing equipment (Bolte,
016). Nonetheless, their primary purpose is to gather extensive data,
nd through the application of statistical techniques, meaningful and
cientifically relevant conclusions can be derived.

Below, the most commonly used non-standardized measurement
rotocols are elaborated.

icroenvironmental studies:
The objective of microenvironmental studies is to assess the electric

ield strength or exposure by studying multiple locations of a similar
ype (Thielens et al., 2018; Röösli et al., 2010; Bhatt et al., 2016a,b;
ermeeren et al., 2013; Sagar et al., 2018; Thielens et al., 2018; Jalilian
5

t al., 2019). These types of locations or microenvironments (MEs)
distinguished by the activities taking place within them, describe the
typical sequence of locations people may spend time in. These may be
aggregated in at home, work, elsewhere inside, shopping, outdoor. And
within these main categories, depending on the number of samples,
subsets can be defined, for instance for transport: waiting at railway sta-
tion, waiting at bus stop. Other important levels defining the exposure
level are time of day (night, morning, afternoon, evening, rush hour),
season and type of area (rural, suburban, urban) (Bolte and Eikelboom,
2012; Frei et al., 2009).

The study establishes a route through these MEs and conducts a
series of repetitive measurements, possibly divided into specific time
intervals, using wearable devices.

Microenvironmental measurements can be conducted using various
modes of transportation, such as drones, cars, bicycles, and more. The
devices employed in these surveys are wearable, capable of measuring
across multiple frequency bands, and operate at a rapid rate, typically
recording data every 3 s across all frequency bands. Their utilization is
primarily confined to assessing environmental exposure, which pertains
to exposure outside of the user’s control.

Presently, microenvironmental measurements are exclusively con-
ducted in non-user scenarios, and the recorded exposure is categorized
as environmental exposure. However, a protocol for microenvironmen-
tal measurements in 5G NR networks has been proposed in Velghe et al.
(2021), encompassing both environmental and self-induced exposure.
To obtain a representative measurement of exposure, a minimum of
15 min of data acquisition is required (Urbinello et al., 2014).

Survey studies:
The objective of a survey study is to evaluate individual exposures

specific to distinct population groups (Eeftens et al., 2018). These
groups are typically characterized by factors like age, residential lo-
cation, and occupation type. From each subset, a select number of
participants are chosen and provided with a portable and/or wearable
measuring device. Participants are required to carry the measurement
device with them for several days and maintain a diary of their ac-
tivities (Van Wel et al., 2017). Additionally, the measurement device
often records GPS data (Van Wel et al., 2017). Key requirements include
the random selection of participants who are representative of their
respective population subsets and ensuring that the participant sample
size is sufficiently large (Eeftens et al., 2018).

Distributed sensor networks:
Distributed networks consisting of multiple sensor nodes (typically

ranging from tens to hundreds of nodes) allow us to monitor EMF over
a significant geographic area, often covering a section of a city (Aerts
et al., 2022; Iakovidis et al., 2022; Gotsis et al., 2008; Manassas et al.,
2012; Anon, 2024e; Oliveira et al., 2007; Rowley and Joyner, 2016;
Díez et al., 2017; Aerts et al., 2018; Djurić et al., 2022). These networks
have the potential for open data and dashboard applications.

These nodes can be positioned in stationary locations, including
both indoor and outdoor public spaces (forming a fixed network), or
they can be mounted on various vehicles like postal service cars (Aerts
et al., 2022) (constituting a mobile network). Sensor networks are
designed to accumulate exposure data over extended period of time,
ranging from weeks to years.

Through these networks, it becomes feasible to assess the temporal
progression of exposure levels, whether in specific frequency bands or
across the entire spectrum (i.e., broadband). This facilitates the creation
of spatiotemporal exposure heat maps. Given the substantial number
of required devices and their susceptibility to potential damage when
located in public areas, there is a necessity to develop these nodes
cost-effectively.

Spot measurements:
Spot measurements (Joseph et al., 2012a; Aerts et al., 2013b; Joseph

et al., 2012b) are versatile, suitable for both compliance testing as de-

tailed in Section 3.2, and non-standardized measurements. For instance
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Table 1
Parameters which influence the bias and uncertainty of the recorded EMF response.

Antenna(s)
Number of Antennas
Type (monopole, dipole, patch, or other)
Radiation pattern
Polarization
Frequency band(s)
Antenna gain [dB]
Antenna aperture [m2]

Detector
Amplification level
Filter
Type (diode, logarithmic, true RMS, or other)
Dynamic range [dB]

- Sensitivity (Minimum level)
[dBm, V/m, or W/m2]

- Maximum level [dBm, V/m, W/m2]

ADC
Sampling time [s]
Resolution

- Number of bits
- Unit [dBm, V/m, W/m2]

Power supply mains-powered, solar-powered, battery-powered (autonomy [h]), or other

Output
Quantity (voltage, power, power density, or electric-field strength)
Aggregation time [s]
Aggregated parameter (minimum, maximum, arithmetic average, geometric average, or other)
Logging interval [s]
for standardized measurements, they prove invaluable in validating
the computational tools employed to evaluate the suitability of base
station (BS) placement near sensitive locations like schools or resi-
dential areas (Ramírez-Vázquez et al., 2020). Spot measurements can
also find application in fundamental scientific research, such as the
advancement of BS technology or the formulation of new measurement
protocols (Aerts et al., 2019). In the latter scenario, these measurements
may involve the use of high-end laboratory equipment, making the pro-
cess more labor-intensive, as will be discussed in Section 4. In addition,
spot measurements can also be used to validate sensor measurements
or ME measurements.

However, spot measurements are not suitable for determining one’s
personal exposure, as they do not move through space meeting all
kinds of object- and person-shadow zones or focal zones. Even exposure
measured within a position in a room may be different at another
position in that room (Frei et al., 2010).

3.4. Specifications of measurement devices, calibration, and uncertainty
assessment

For EMF measurements, the choice of device varies depending
on the specific assessment goals and the corresponding measurement
protocols (a comprehensive overview of EMF measurement device
types is provided in Section 4). However, regardless of the method
or equipment used, it is essential for the completeness and credibility
of reported measurements to include a description of the associated
measurement uncertainty.

Best practices entail the identification of various sources of un-
certainty that contribute to the overall uncertainty in measurements.
This collection of individual sources and their potential correlations
is referred to as an ‘‘uncertainty budget’’ (Stratakis et al., 2009). This
becomes particularly significant when measured values approach the
reference levels and exposure limits established by international or-
ganizations like ICNIRP, standardization bodies such as the Interna-
tional Electrotechnical Commission (IEC) and the European Committee
for Electrotechnical Standardization (CENELEC), or national/regional
legislation.

The uncertainty budget of the measurements includes systematic
errors, biases, and random errors (uncertainty) associated with the
measurement device, setup, and measurement circumstances. The de-
tails of the measurement device under consideration are provided in
6

Table 1.
Various factors contribute to systematic errors. In order to be able to
compare measurements under different circumstances, between differ-
ent measurement setups or devices systematic errors can be partially
corrected by whitebox models that describe the dependence of the
measurements on environmental variables or frequency. For instance
temperature and humidity influence most measurements according to
a well known response curve. While commercial devices come with
calibration certificates, ensuring that correction factors have been es-
tablished and applied, a study by Bolte et al. (2011) notes that these
certificates are issued per device type rather than per individual device,
as they ideally should be.

The persisting random effects continue to introduce measurement
uncertainties (see Section 6.5). These uncertainties should also be as-
sessed during the calibration process and documented in the calibration
certificates. These include uncertainties stemming from modulation
errors, resolution, anisotropy, linearity, and frequency response (IEC
62232:2022, 2022; Anon, 2013).

In addition to the equipment-related biases mentioned above, the
overall uncertainty budget also encompasses uncertainties associated
with unknown (not whitebox) measurement conditions, including envi-
ronmental factors such as scattering, reflections, the influence of nearby
objects and individuals, and the measurement method itself.

Other sources of random errors such as interoperator variability,
intraoperator variability, rounding errors, etc. should be statistically be
taken into account and formulated as uncertainties. Furthermore, post-
processing factors like spatiotemporal averaging as well as the sampling
interval and duration, upper and lower threshold, and noise floor, and
temporal drift should be taken into consideration.

It is worth emphasizing that all these various sources of uncertainty
contribute to the overall combined uncertainty. The purpose of combin-
ing uncertainties is to calculate the total magnitude of uncertainty by
considering a set of independent uncertainty components. This process
is commonly referred to as ’Summation in Quadrature’ or ’Root Sum of
the Squares’ (Dietrich, 1991).

Subsequently, the combined uncertainty is expanded (i.e., multi-
plied by a factor greater than 1) to obtain a desired coverage factor,
which dictates the level of confidence associated with data points
within a specific standard deviation range. For instance, if a coverage
factor of 1 is assumed, it indicates a confidence level that 68% of data
points fall within one standard deviation. On the other hand, a coverage
factor of 2 implies a confidence level that 95% of the data points would
fall within a range of two standard deviations (Anon, 2024c).
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4. State-of-the-art RF-EMF measurement instruments

A range of instrument categories suitable for RF-EMF exposure
assessments are presented, as employed in measurement campaigns
documented in peer-reviewed publications. These categories encompass
a variety of instruments, ranging from advanced high-end laboratory
equipment to lab-developed standalone devices and sensors. Gener-
ally, a brief overview of the operational mode of certain equipment
type is provided, highlighting different configurations. Subsequently,
we present tables detailing the critical performance parameters for
different instrument categories, drawing from peer-reviewed publica-
tions. Additionally, a comparative study for certain lab-build devices is
presented.

4.1. High-end commercial instruments

4.1.1. Frequency scanning and selective instruments employed in measure-
ments of RF-EMF exposure

The primary category of instruments employed for signal detection,
demodulation, and field level measurement across a broad frequency
spectrum and bandwidths is known as spectrum/signal analyzers (SAs).
SAs utilize a heterodyne receiver architecture, enabling them to mea-
sure the magnitude of an input signal across the entire frequency range
of the instrument.

SAs provide best-in-class performance enabling frequency sweeping
coverage up to 85 GHz, a sensitivity level, displayed average noise level
(DANL), exceeding −160 dBm/Hz and provide analysis bandwidths
arger then 8 GHz (Anon, 2023u). While an SA is typically designed
y test and measurement equipment manufacturers as a versatile lab-
ratory benchtop instrument, vendors often integrate a similar RF
ront-end and Digital Signal Processor (DSP) into specialized units
hich can be used for RF-EMF exposure assessments, known as network

canners (Anon, 2023x; Betta et al., 2023).
The evaluation of RF-EMF exposure for a 5G NR base station using

requency scanning and selective instruments is reported through two
ethods:

• using a frequency-selective instrument, by measuring the instan-
taneous electric-field strength sequentially across the channel’s
bandwidth over a specific duration and calculating the average,
resulting in what is known as the time-averaged instantaneous
exposure (𝐸𝑎𝑣𝑔).

• using a frequency-selective or scanning instrument, by measuring
the electric-field strength per resource element of the predomi-
nant Synchronization Signal Block (SSB) beam. By assuming the
SSBs are transmitted at fixed power, an extrapolation can be made
to determine the theoretical maximum exposure (𝐸𝑚𝑎𝑥) of the
base station (IEC 62232:2022, 2022). However, this extrapola-
tion method can also use the electric-field strength per resource
element of the downlink traffic beam (PDSCH) directly, which is
useful when the gain difference between SSB and traffic beams is
not known (Aerts et al., 2019, 2021).

In Deprez et al. (2022), a detailed comparison between these evaluation
methods was performed.

4.1.2. Broadband field meters
A portable device for measuring the total electric-field strength or

power density across a wide frequency range (ranging from hundreds
of kHz up to a hundred GHz) is established by combining a broadband
field meter with a triaxial electric field probe. Typically, the field meter
display directly indicates the field measurement outcomes, such as the
average level 𝐸𝑎𝑣𝑔 over a specific averaging time, and occasionally
the minimum and maximum values during that period. Furthermore,
7

advanced broadband field meters, like the Narda FieldMan, incorporate
additional functionalities such as a built-in distance meter, compati-
bility with a smartphone application, and integration with a software
platform (Anon, 2023i,h).

Many probes, such as the Narda EF-0691 (Anon, 2023j), employ
diode-based sensors characterized by a non-linear response depends
on the strength of the measured signal. In this scenario, the sensor
acts as a Root-Mean-Square (RMS) detector at lower field levels and
transitions to a peak detector at higher field levels (Anon, 2013). In con-
trast, other probes utilize true Root-Mean-Square (tRMS) thermocouple
sensors (Anon, 2023i), which provide a tRMS response. However,
this type of detector comes with a trade-off: it reduces sensitivity to
8 V/m (Anon, 2023i), and the dynamic range within the range of 30–
40 dB. It is worth noting that, for diode-based probes, the dynamic
range within the RMS domain is also typically limited to approximately
40 dB.

The sensitivity of broadband probes varies based on their type
and the frequency range they cover. For diode-based probes used in
the measurement of FR1 (such as the Narda EF-0691 (Anon, 2023i)
and the WaveControl WPF6 (Anon, 2023k), both designed for the
100 kHz to 6 GHz frequency range), the sensitivity is typically at least
0.2 V/m. In older systems with a range of 100 kHz to 3 GHz, the
minimum sensitivity was 0.3 V/m (Rowley and Joyner, 2016). For FR2-
capable probes designed for very wide frequency ranges (e.g., the Narda
EF 9091 (Anon, 2023d), which measures electric-field strength from
100 MHz to 90 GHz), the sensitivity is found to be at least 0.7 V/m.

4.1.3. Area monitors
Closely related to broadband field meters are devices known as

‘‘area monitors’’, such as the Narda AMB series (Anon, 2023g) and
the Wave Control MonitEM system (Anon, 2023k). Area monitors are
designed for fully autonomous operation and often come equipped with
features like solar panels, internal batteries, wireless connectivity, and
automatic data transfer. In addition to a processing unit featuring a data
logger, they include interchangeable field probes, which can be either
broadband or tri/quad-band (to distinguish between mobile telephone
services). It is worth mentioning that Narda also offers a selective area
monitor capable of monitoring up to 20 individually programmable
frequency bands, and MapEM once had the INSITE Box. Furthermore,
it is important to note that both Narda and WaveControl offer versions
of their area monitors designed for installation on vehicles.

The broadband probes specially designed for area monitors exhibit
similarities to those discussed for field meters (for example, you can
compare the Narda AMB 8059 with option EP-1B-03 and probe EF-
0691 (Anon, 2023g,i). However, the tri/quad-band probes, as well
as those used in selective area monitors, demonstrate significantly
improved sensitivity, falling within the range of 0.01–0.05 V/m.

4.1.4. Commercial exposimeters
Exposimeters, also known as personal exposure meters (PEMs), are

compact wearable devices suitable for use by trained individuals and,
in some cases, untrained volunteers (Röösli et al., 2010). Typically,
these devices operate as passive objects, requiring no interaction with
the body during measurements. Prior to measurement, the device is
configured, and data is collected afterward.

PEMs are typically designed to measure within specific radio-freq-
uency bands, which can range in FR1 bands from 1 MHz to 6 GHz,
corresponding to various technologies. This approach allows for the
segregation of exposure sources from different technologies (e.g., WiFi,
2G–5G) and different sources within these technologies (e.g., uplink
(UL) from user devices and downlink (DL) from base stations, which
may use different frequency bands). For each dedicated frequency
band, PEMs measure the incident electric-field strength or power den-
sity. The sampling rate is often customizable by the user, with a typical
range of 1 to 3 s.

PEMs are typically battery-powered and designed for extended mea-
surement sessions, lasting from a few hours to several days, and in
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Table 2
Technical specifications of commercial and lab-built exposimeters.

ExpoM-RF 4 EME-Spy
Evolution

PDE vest/helmet

Vanveerdeghem
et al. (2015),
Thielens et al.
(2016, 2017)

González et al.
(2021)

mm-PEM (Aminzadeh et al., 2017, 2018)

Sampling rate Min 2–4 s 2 s 1 s 1 s 1 s
# Frequency bands 25 20 1 Multiple 1
Dynamic range 60 dB 56 dB 80 dB 90 dB
Max. E-field/ power 6–60 V/m 6 V/m 20 dBm
Sensitivity 0.005–0.010

V/m
0.02–0.05 V/m −70 to 20 dBm

Detector True-RMS +
envelope peak

Diode-based
RMS

Logarithmic

Antenna Triaxial Triaxial Multiple
dual-polarized
patches/4
monopoles

Array of 5
fractals

four-patch single-layer array

Measurement time 50 ms 46.22 ms
Isotropic uncertainty +/−1.5 dB

below 4 GHz
+/−2.5 dB
above 4 GHz

Crosstalk −40 to −60 dB
-

some cases, up to a week. The antennas used may include monopole
antennas or sets of multiple monopoles oriented in different directions
to approach isotropy. Commercial devices are available, and different
research laboratories have constructed their own devices for specific
applications. Table 2 lists the relevant technical specifications of both
commercial (the ExpoM-RF 4 and the EME-Spy Evolution) and lab-built
exposimeters which will be discussed in Section 4.2.4.

Two prominent lines of commercial devices are commonly found:
the ExpoM-RF series (Fields at Work) and the EME-Spy series (Mi-
crowave Vision Group). The most recent models in these lines are the
ExpoM-RF 4 (Anon, 2023m) and the EME Spy Evolution (Anon, 2023e),
respectively.

The ExpoM-RF 4 is capable of measuring at up to 25 customizable
center frequencies, ranging from 50 MHz to 6 GHz, with bandwidth
options of 35, 75, or 100 MHz. It allows users to set the maximum
measurable field strength, though this affects sensitivity. The sensitivity
for 6 V/m measurements falls within the range of 0.005 to 0.010 V/m,
with variations across different frequencies. Users can define the sample
interval, with the shortest interval being 2 s for 10 frequency bands and
up to 4 s for 25 bands. Notably, the ExpoM-RF 4 introduces a spectrum
analyzer mode, distinguishing it from previous versions.

An important distinction of this latest version lies in the fact that the
ExpoM-RF 3 only measured using true-RMS with an integration time of
0.3 s (Anon, 2023f), while the ExpoM-RF 4 performs both true-RMS
and envelope peak field strength measurements simultaneously within
a 50ms time interval. The specific post-processing method to combine
hese two measurements into a single E value is not specified, but
his information may be available from the manufacturer. The device
mploys a triaxial isotropic antenna.

The EME Spy Evolution empowers users to monitor their choice of
p to 20 frequency bands from a selection of 80 fixed options. These
ptions encompass various bandwidths and center frequencies within
he frequency range listed in Table 2. The exact sensitivity is contingent
n the specific frequency. Users can define the sampling interval, with
minimum setting of 2 s.

As far as the authors are aware, there are presently no commercially
vailable PEMs designed for FR2. Additionally, it is worth noting that
oth of the commercial devices mentioned earlier are equipped with a
8

PS logger.
4.2. Custom-developed instrument and sensors

4.2.1. Laboratory-designed broadband probes
A number of studies have reported on the design of custom-built

broadband probes, typically in the form of compact dipoles equipped
with Schottky diodes (Mavromatis et al., 2009, 2010; Živković et al.,
2011; Viani et al., 2011; Leferink, 2013; Viani et al., 2016; Pinel
et al., 2020; Ioriatti et al., 2009). These in-house developed probes
exhibit similar attributes to their commercial counterparts, includ-
ing sensitivity, dynamic range, and frequency range. Frequently, the
intention behind creating these probes is to integrate them into cost-
effective, compact, and self-sufficient measurement devices, i.e., as
sensor nodes (Oliveira et al., 2006).

4.2.2. SDR-based sensor nodes
Spectrum analyzers, which operate in the frequency domain, may

encounter limitations due to the inherent trade-off between frequency
and time resolution. This limitations can make it challenging to dif-
ferentiate between various signals that share the same frequency band
but occur at different time intervals, like 5G-TDD uplink and downlink
signals (Minucci et al., 2022). However, it has been demonstrated that
a trade-off is achievable in some cases, as seen in Aerts et al. (2019).

In contrast, time domain instruments, such as real-time (spectrum)
analyzers (RTA) and Software-Defined Radios (SDR), can overcome this
frequency-related constraint. Between these two, SDRs are notable for
their compactness, portability, and relatively lower cost in comparison
to SAs and RTAs. As a result, SDRs could find application in large-scale
deployments, such as sensor networks.

An SDR is a flexible RF communication system that can be employed
for both transmitting and receiving RF signals. It enables the imple-
mentation of physical components like filters, attenuators, amplifiers,
synchronizers, modulators, demodulators, and detectors in a digital
form, positioned as close as feasible to the antenna (Santiago Rivera
et al., 2018; Deprez et al., 2023). In this manner, the SDRs functionality
is primarily dictated by software (e.g., utilizing GNU Radio), rather
than hardware. This software-driven approach allows for dynamic ad-
justments to the SDRs operation and characteristics (Santiago Rivera
et al., 2018).

Examples of SDR-based measurement nodes can be found in e.g., San
tiago Rivera et al. (2018) (development of a digital FFT SA), Bechet
et al. (2019) and Robert et al. (2021) (broadband field meter), Deprez
et al. (2023) (measurement node for specific frequency bands), Min-

ucci et al. (2022), and Sârbu et al. (2022) (isotropic broadband field
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Table 3
Technical specifications of commercially available SDRs.
SDR Frequency range Resolution Sample rate (MSPS) Bandwidth

(MHz)
Open source? Cost (e) Chipset

Adam-Pluto 325
MHz–3.8 GHz
(70 MHz–6 GHz
with software
modification)

12 bit 61.44 20 (56 after
software
modification)

yes 250 AD9363

USRP E312 70 MHz–6 GHz 12 bit 61.44 56 no 6000 AD9361
RTL-SDR Blog v3 500 kHz–1766

MHz 22 MHz
−2.2 GHz

8 bit 3.2 3.2 no 6000 RTL2832U

HackRF One 1 MHz–6 GHz 8 bit 20 20 yes 370 MAX5864
FreeSRP One 70 MHz–6 GHz 12 bit 61.44 56 yes 420 AD9364
LimeSDR 100

kHz–3.8 GHz
12 bit 61.44 56 yes 300 LMS7002M

BladeRF xA44 47 MHz–6 GHz 12 bit 61.44 56 no 540 AD9361
AntSDR E200 (1) 325

MHz–3.8 GHz
12 bit 61.44 20 yes TED AD9363

AntSDR E200 (2) 70 MHz–6 GHz 12 bit 61.44 56 yes TED AD9361
Fig. 2. Low-cost RF-EMF sensor nodes: (a) S3R sensor node (Deprez et al., 2023), (b)
WAVES sensor node (Deprez et al., 2023), (c) low-complexity dosimeter (Diez et al.,
2014).

meter). Unfortunately, uncertainty analysis is lacking in all of the
aforementioned studies.

A variety of commercially available SDRs offer diverse performance
levels and price ranges, as summarized in Table 3. While many of
these devices are primarily designed for GPS or satellite transmission
bands, some also cover the 5G FR1 frequency bands. Utilizing SDRs in
measurement nodes offers the advantage of readily available hardware,
simplifying field deployment. Additionally, certain compact SDRs, like
the Adalm-Pluto, are pocket-sized and can be controlled via MATLAB
or Python environments, making them well-suited for deployment as
measurement nodes.

The Adalm-Pluto is an intriguing choice due to its appealing fea-
tures (Anon, 2023). Like all SDRs, it serves both as a transmitter
(Tx) and receiver (Rx). It features an AD9363 chipset with an initial
frequency range of 325 MHz to 3.8 GHz, but it can be expanded to
cover 70 MHz to 6 GHz with a simple adjustment. This adjustment
essentially tricks the device into recognizing the AD9363 as if it was
a AD9364 with extended capabilities. With a comparable trick (Anon,
2023b) the sample rate of the Blade xA4 can be doubled by using 8 bit
instead of 16 bit space for the numbers.

The Adalm-Pluto has a 12-bit ADC resolution, a detection limit of
−98 dBm, and an impressive dynamic range exceeding 80 dB (Deprez
9

Table 4
Frequency bands of sensor nodes.
S3R sensor
node [MHz]

WAVES sensor node [MHz] Low-complexity
dosimeter [MHz]

758–788 DL 791–821 DL 925–960 DL
1452–1492 DL 925–960 DL 1805–1880 DL
2110–2170 DL 1805–1880 DL 2110–2170 DL
3450–3750 DL 3550–3700 DL 2400–2483.5

WiFi

et al., 2023). It supports the connection of two antennas, such as the
example in Deprez et al. (2023) where a dual-band JCG401 antenna
(covering frequencies from 828 MHz to 984 MHz and 1710 MHz to
2170 MHz) and a wideband W5150 antenna (ranging from 617 MHz
to 6000 MHz) were used. Furthermore, it has the capability to store
in-phase and quadrature (IQ) samples (‘‘in-phase’’ and ‘‘quadrature’’
refer to two sinusoids that have the same frequency and are 90◦ out
of phase). Alternatively, the software on the device allows for the
conversion of IQ samples into another unit, specifically dBFS (decibels
relative to full scale). Through software control, gain settings of up
to 74.5 dB can be configured, either manually or using automatic
gain control (AGC). When employing AGC, it is important to note that
changes in the full-scale range necessitate device calibration with a
known source to obtain meaningful physical values (Minucci et al.,
2022).

4.2.3. Hardware-based compact measurement nodes
To achieve accurate spatiotemporal RF-EMF exposure maps, a sig-

nificant number of densely-distributed sensors are necessary (Aerts
et al., 2022). However, such an extensive sensor network is econom-
ically unfeasible with high-end, costly, and relatively bulky devices. As
a solution, researchers are developing low-cost (priced below e300),
compact, and energy-efficient sensor units tailored for specific FR1
frequency bands. These units are integral in establishing a continuous
RF-EMF exposure monitoring system (Aerts et al., 2022; Diez et al.,
2014; Deprez et al., 2021; Korkmaz et al., 2022; Kwon et al., 2023).

For instance, a dedicated measurement node optimized for 5G
applications has been created by Korkmaz et al. (2023), enabling
measurements across the four frequency bands intended for use in the
Netherlands. Fig. 2 displays some examples of laboratory-built, budget-
friendly RF-EMF sensor nodes. The 𝑆3𝑅 and WAVES sensor nodes
utilize in-house designed narrowband planar half-wavelength dipole
antennas for each frequency band (Deprez et al., 2023), while the
low-complexity dosimeter employs a printed PCB monopole antenna
probe (Diez et al., 2014). It is important to note that all low-cost
sensor node antennas are linearly polarized and exhibit omnidirectional
radiation patterns.
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Table 5
Overview of cardinal epidemiological studies using exposimeters.
Paper Type of study Type of PEM Use of PEM

Roser et al. (2015) Prospective cohort Commercial Carried by pax (3 days)
Cabré-Riera et al. (2022) Prospective cohort (Mothers and

Children’s Environmental Health)
Commercial Validation of EMF model

Choi et al. (2017) Population-based birth cohort Commercial Carried by pax (1 day) Prospective cohort (SCAMP)
Huss et al. (2021) Exposure measurements

(ACCEDERA)
Lab-built +commercial Comparison of measurement devices
The developed measurement nodes are specific to certain frequency
bands (e.g., see Table 4 for low-cost sensor nodes (Aerts et al., 2022;
Diez et al., 2014; Deprez et al., 2021; Korkmaz et al., 2022)). Typically,
these sensors can measure up to four frequency bands used by GSM,
UMTS, LTE, and/or 5G NR for downlink (DL) communications. In the
design of these sensor nodes, bandpass filters are commonly employed
for each band to suppress signals from neighboring and interfering
bands. Depending on the desired sensitivity level, a low noise amplifier
(LNA) may be utilized to adjust the RF power level within the power de-
tector’s dynamic range. There are two primary types of power detectors:
logarithmic and (t)RMS. Logarithmic detectors convert the input RF
power into a DC voltage that is directly proportional to the logarithm of
the input, providing an output in decibels (dB). RMS detectors produce
a DC output that is proportional to the RMS value of the signal. It is
worth noting that using a true RMS detector is more accurate, as it takes
into account the instantaneous values of the signal without assuming
a specific waveform shape. The dynamic range of power detectors
typically falls within the range of 56–70 dB for FR1 frequencies. The
DC output is then sampled with an ADC and is converted into a power
level (dBm) using a lookup table within a standard microcontroller.

Similarly, in Viani et al. (2011, 2016), Ioriatti et al. (2009) cost-
effective sensors for distributed EMF exposure assessment have been
proposed. The sensors consist of three orthogonal dipole antennas, each
featuring a diode detector to transform field values into a DC signal.
Subsequently, with the use of an ADC and a microcontroller, these
signals are converted into power or field values. It is worth noting
that the sensors measure accurately within the frequency range of
200–5000 MHz (Viani et al., 2011).

All of the suggested EMF sensors are compact, budget-friendly, and
user-friendly, requiring no specialized expertise for operation.

4.2.4. Lab-built exposimeters
In response to the inherent measurement uncertainties associated

with commercial exposimeters, primarily stemming from body-shado-
wing effects, an on-body Personal Distributed Exposimeter (PDE) has
been proposed, featuring multiple measurement nodes (see Table 2)
(Vanveerdeghem et al., 2015). Each node is seamlessly integrated onto
a textile antenna feed plane equipped with patch antennas. The PDE
takes the form of a wearable vest, featuring multiple nodes distributed
across various pockets. This particular PDE was tailored for the GSM
downlink frequency band of 925–960 MHz, employing a logarithmic
RF power detector with an impressive dynamic range of 80 dB. The
PDE was designed with modularity in mind, accommodating up to
11 frequency bands (Vanveerdeghem et al., 2015; Thielens et al.,
2016). Much like the sensors of the previous section, nodes consist
of a bandpass filter, RF power detector, ADC, and a microcontroller.
Fig. 3 depicts the PDE antenna and the processing unit. It is worth
noting that the use of the PDE with untrained volunteers may be
somewhat inconvenient. A similar design is employed for a drone-based
RF exposure measurement system in Joseph et al. (2016).

In a related development, a PDE-helmet was introduced as part of
a pilot project (Thielens et al., 2018). Based on simulations, it was
determined that the human head experiences the least variation in
E-fields and, consequently, the lowest measurement uncertainty. To
capitalize on this, the PDE-helmet featured four monopoles positioned
within a bicycle helmet in various orientations. This prototype also
10
Fig. 3. The PDE (Vanveerdeghem et al., 2015) consists of a number of distributed
nodes with each (a) a textile patch antenna and (b) a processing unit.

employed a diode-based RMS detector and was specifically designed
for the 900 MHz GSM band.

A system resembling a spectrum analyzer while retaining the key
benefits of conventional exposimeters was proposed in González et al.
(2021). This system operates by assessing the highest received power
level through the use of a logarithmic detector. It operates across a
spectrum spanning from 78 MHz to 6 GHz, employing 300 kHz res-
olution bandwidths within numerous narrow bands. This configuration
enables the system to identify various sources of electromagnetic fields.
Each measurement takes place at one-second intervals, corresponding
to 46.22 μs per frequency point. The frequency range is covered by
an array of five fractal antennas sourced from Fractus Antennas, based
in Barcelona, Spain. These antennas possess a wide bandwidth and
are comparatively compact in relation to other types of commercial
antennas. Notably, the system has a dynamic range of 90 dB with RF
input power ranging from −70 to 20 dBm with a 0.04 dB resolution.

To date, only two research studies have been identified that detail
the creation of custom-built measurement devices for evaluating RF-
EMF exposure at frequencies within the FR2 range. These studies,
documented in Aminzadeh et al. (2017, 2018), introduced two distinct
versions of a mmWave personal exposure meter (mm-PEM) designed to
operate at 60 GHz. The initial version featured a limited set of wearable
antennas designed for placement on a forearm (Thielens et al., 2016).
These wearable antennas were based on a microstrip-fed four-patch
single-layer antenna array originally developed for applications in body
area networks (BANs) (Chahat et al., 2012). In the second study, the
mm-PEM was specifically evaluated for its effectiveness in assessing
exposure within indoor diffuse fields (Aminzadeh et al., 2018).
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4.2.5. Cardinal research on human studies
In contrast to PEMs, high-end measurement devices (mainly) used

for spot measurements, such as spectrum analyzers and broadband field
meters, are not typically used in epidemiological studies since they only
provide measures of the exposure at a limited number of points in space
and time. In fact, the authors are only aware of two (cross-sectional)
studies in which a health or behavior outcome is related to RF-EMF spot
measurements (Calvente et al., 2015; Meo et al., 2018). Moreover, the
authors have no knowledge of any published epidemiological studies
making use of RF-EMF sensor networks for their exposure assessment.

In Bartosova et al. (2021), an SDR is proposed as a source for
dosimetry studies, emphasizing the importance of generating repro-
ducible results using the SDR as the radiation source. A HackRF One
SDR was employed in a study to measure electromagnetic leakage
from household appliances (Perotoni et al., 2022). Additionally, var-
ious SDRs have been used for ElectroSmog measurements in a 5G
network (Minucci et al., 2022). In Robert et al. (2021), an advanced and
relatively expensive 3-axis system featuring a USRP-N310 SDR platform
was utilized to measure RF fields emitted by an LTE-band telephone.

On the other hand, PEMs have been used in some of the recent
big epidemiological studies (Bodewein et al., 2022). Table 5 lists some
cardinal examples of these studies. The personal exposure of the partici-
pants is assessed using a combination of measurements with PEMs and
questionnaires, quantifying the participants’ exposure based on their
use of mobile devices Roser et al. (2015), Cabré-Riera et al. (2022)
and Toledano et al. (2018). In Cabré-Riera et al. (2022) the exposure is
assessed using a questionnaire and geospatial modeling of EMFs from
base stations. The PEMs were used in a microenvironmental measure-
ment campaign to validate these models. Participants are instructed to
carry the PEM with them in their daily life for a specified duration
(1–3 days), and might be instructed to keep a diary (Roser et al.,
2015; Toledano et al., 2018). To our knowledge, no lab-built exposime-
ters have been used in large scale epidemiological studies. However,
in Huss et al. (2021), a lab-built body-distributed-exposimeter (BDE)
was used in parallel with a commercial device. The conclusion was that
due to body shielding, commercial exposimeters report slightly lower
exposure values. This is informative for the interpretation of existing
epidemiological research results.

5. Mobile phone based tools

A number of mobile phone applications (apps) have been developed
to evaluate various parameters of mobile phone networks, including
the 5G NR network. It is also proven feasible to use them for RF-EMF
exposure assessment purposes (Amini et al., 2023). Some of these apps
can also act as the interface between the network and a robust RF-EMF
monitoring devices (e.g., spectrum analysers or network scanners).

Table 6 lists the apps, measured parameters, and their applica-
tions in 5G NR exposure assessments. Some of the key parameters
measured by them are Physical Cell IP (cell ID or PCI), Global Position-
ing System (GPS) location, Received Signal Strength Indicator (RSSI),
Reference Signal Received Power (RSRP), Reference Signal Received
Quality (RSRQ), and Signal-to-Noise and Interference Ratio (SINR),
DL bandwidth, etc. Some of these parameters have been described in
literature of RF-EMF exposure assessment (e.g., Brzozek et al., 2019;
Minovski et al., 2021; Stevens and Younis, 2022; Amini et al., 2023).
The 5G NR specific physical layer parameters, which make the basis for
estimating RF-EMF exposures, are briefly introduced before discussing
some of the apps utilized in scientific studies (Anon, 2023l).

AzenqosTM (AZQ) mobile network test app APK provides measure-
ent and optimization solutions for 5G NR mobile networks (Anon,
023c). It can be installed on a selected Android phones ((Anon,
023c; Homayouni et al., 2022; Chobineh et al., 2018), to under-
ake 5G NR signal characterization (Anon, 2023a)). The app has been
pplied in characterizing DL and UL exposure in non-5G networks
Chobineh et al., 2018).
11
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TEMSTM Pocket, a commercial state-of-the-art phone-based tool
rom Infovista, monitors the performance of wireless mobile networks
n a millisecond level basis (Anon, 2023o; Minovski et al., 2021).
he tool has been used to undertake RF testing that collects data on
F parameters for mobile networks, including both sub 6 GHz and
mWave 5G NR (Stevens and Younis, 2022; Minovski et al., 2021).

Qualipoc AndroidTM is based on commercial Android smartphones
r tablets. The data recorded by the app are stored on the handset
nd can be downloaded into a CSV file. The QualiPoc also connects
ith a network scanner (e.g., R&S TSMA6 scanner or SA SRM-3006)
nd the combined parameter values (e.g., SSB signals data) can be
sed to characterize RF-EMF exposure levels in different situations.
or example, Qualipoc-installed mobile phone was used to control
G NR signals (e.g., under data download/upload) and gather 5G NR
etwork information, which was then combined with RF-EMF exposure
ata collected with SRM-3006 spectrum analyser to estimate maxi-
um electric field strength of 5G NR signals (Chountala et al., 2021).

imilarly, the Qualipoc tool, along with R&S TSME network scanner,
as used to measure and characterize maximum signal strength of 5G
R (3.68 GHz) traffic beam at the measurement point or UE (Adda
t al., 2020). Further, in Sali et al. (2022) the application of QualiPoc
s demonstrated in code-selective measurement of 5G NR (3.5 GHz)
ultiple-input and multiple-output (MIMO) network in Malaysia. This
easurement approach allows in determining the maximum possible
F-EMF emission per PCI and SSB due to its decoding signal feature.
ualiPoc can also be used to validate new proposed hardware tools

or personal RF-EMF exposures assessment, such as an ’add-on sen-
or’, which can be attached to a mobile phone handset as described
y Van Bladel et al. (2023), Stroobandt et al. (2023) . Through this
pproach, human exposure could be evaluated under different mo-
ile phone usage scenarios. A good agreement for uplink exposure
as reported with a RMS error of 3.17 dB between the in-situ cal-

brated add-on sensor and QualiPoc (Stroobandt et al., 2023). This
emonstrates a real-life application of Qualipoc in measuring RF-EMF
xposures and validating other devices under development (Sae et al.,
019)

Nemo HandyTM is an Android-based mobile app, which enables
easurement of key radio-frequency parameters of wireless and radio
etworks, including 5G NR up to 40 GHz (Anon, 2023q; Mazloum et al.,
021). The app can be installed on any commercially available Android
martphone and support the assessment of 5G NR exposure parameters.
he app has been demonstrated its applicability in the evaluation of 5G
R (3.5 GHz) signal parameters (Milde and Pilinsky, 2022). Similarly,

n Hoppari et al. (2021) performance of 5G NR (3.5 GHz) and Wi-Fi
etworks (2.4 and 5 GHz) with the Keysight Nemo Handy app are
valuated. In Sitindjak et al. (2021) Nemo Handy app is used as a
enchmark tool while evaluating performance of freely available apps,
-Net Track Lite (Anon, 2023n) and Net Monitor Lite (Anon, 2023r),

n terms of reporting results of LTE 3G network parameters.
SigCapTM is another app developed by the researchers at the Univer-

ity of Chicago, which collects data on various 4G and 5G NR physical
ayer parameters (see Table 6) (Anon, 2023w; Sathya et al., 2022). The
pp was used to evaluate the impact of small cell LTE on Wi-Fi data
ransmission, and to create 5G NR cell map in Chicago (Anon, 2023t).

Network Signal GuruTM (NSG) is a commercial Android app which
ses mobile phone’s root capability to gather similar physical layer
easurement data of 5G NR network. Therefore, it provides more
ata on 5G NR specific parameters compared to those provided by
igCap (Rochman et al., 2022). These two apps were used to compare
G and 5G NR (mmWave) parameter values (See Table) of different
arriers deployed in Chicago and Miami (Rochman et al., 2022). This
ould be relevant for the situation where 4G (as a primary channel) and
G (as a secondary channel) base stations are co and/or nearby located,
uch as current mobile phone base station deployment in Australia.

G-NetTrack ProTM, non-rooted Android app was used to collate

G NR network data, including RSRQ and RSRP of an Irish mobile
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Table 6
Mobile phone applications available for 5G NR signal characterization and RF-EMF exposure assessment.
Instrument name
(vendor)

Parameters measured Frequency range Applications in
RF signal or
exposure
characterization

AzenqosTM (Anon, 2023c)
(Freewill FX,
Bangkok, Thailand)

Frequency, PCI, SS-RSRP (RSRPa) [dBm], SS-RSRQ
(RSRQa) [dB], SS-SINR (SINRa) [dB], GPS, Tx [dBm]

900, 1800, 2100 and
2600 MHz

Homayouni
et al. (2022),
Anchuen et al.
(2021),
Chobineh et al.
(2018), Aerts
et al. (2015),
Mazloum et al.
(2018)

TEMSTM Pocket
(Anon, 2023o) (Infovista,
Billerica, MA, USA)

Frequency, PCI, SS-RSRP (RSRPa) [dBm], SS-RSRQ
(RSRQa) [dB], SS-SINR (SINRa) [dB], GPS, [dBm],
Tx [dBm]

3.5 GHz, 27.5 GHz Minovski et al.
(2021), Stevens
and Younis
(2022), Sae
et al. (2019),
Zhohov et al.
(2018)

QualiPoc AndroidTM (Anon,
2023v) (R&S,Munich,
Germany)

Frequency, PCI, SS-RSRP (RSRPa) [dBm], SS-RSRQ
(RSRQa) [dB], SS-SINR (SINRa) [dB], GPS, [dBm],
Tx [dBm]

3.5 GHz, 3.68 GHz Stroobandt et al.
(2023),
Van Bladel et al.
(2023),
Chountala et al.
(2021), Sae
et al. (2019)

Nemo HandyTM (Anon,
2023q) (Keysight, USA)

Frequency, PCI, SS-RSRP (RSRPa) [dBm], SS-RSRQ
(RSRQa) [dB], SS-SINR (SINRa) [dB], GPS, [dBm],
Tx [dBm]

3.5–40 GHz Milde and
Pilinsky (2022),
Sitindjak et al.
(2021), Mazloum
et al. (2021),
Sae et al.
(2019), Hoppari
et al. (2021)

SigCap (Anon, 2023w)
(University of Chicago, IL,
USA)

PCI, primary cell Bandwidth, SS-RSRP (RSRPa)
[dBm], SS-RSRQ (RSRQa) [dB], SS-SINR (SINRa)
[dB], GPS, [dBm], Tx [dBm]

5G NR mmWave
network

Sathya et al.
(2022),
Rochman et al.
(2022, 2021)

Network Signal Guru
(Anon, 2023s) (Qtrun
Technologies, Beijing,
China)

PCI, Frequency, bandwidth, SS-RSRP (RSRPa) [dBm],
SS-RSRQ (RSRQa) [dB], SS-SINR (SINRa) [dB], GPS,
[dBm], Tx [dBm], resource block allocation, MIMO
mode

5G NR mmWave
network

Rochman et al.
(2022, 2021)

G-NetTrack Pro (Anon,
2023n) (Gyokov Solutions,
Sofia, Bulgaria)

Frequency, PCI, SS-RSRP (RSRPa) [dBm], SS-RSRQ
(RSRQa) [dB], SS-SINR (SINRa) [dB], GPS, [dBm],
Tx [dBm]

3.5 GHz, 5G NR
mmWave network

El-Saleh et al.
(2022), Raca
et al. (2020),
Geng et al.
(2019)

a Parameters specific to wireless/mobile network technologies other than 5G NR; GPS: Global Positioning System; Tx: uplink power of a User
Equipment.
operator (Raca et al., 2020). This app can presumably use much lower
data sampling time (e.g., 1 or 2 s) (Geng et al., 2019) compared to that
of SigCap. The recorded data are automatically stored as logfiles (in text
and KML formats) for further analysis including on the G-NetLook Web.
Further, the app can also be used in assessing legacy mobile networks
such as 3G and 4G; for example, collected mobile network signal and
quality data (e.g., RSRP and RSRQ, etc.) in Saudi Arabia (El-Saleh et al.,
2022).

5.1. Intercomparison and applications

There are only a few studies undertaking an intercomparison of
these apps and/or validating the results with other tools. For example,
in Sae et al. (2019) three apps (TEMS, Qualipoc and Nemo Handy)
are used in characterizing LTE 800 signal associated RF-EMF exposure
(e.g., UE Tx power). They conducted measurements with airborne
UE’s (smart phones attached to drones) and evaluated their impact on
the ground level UE’s in a rural environment. In Sae et al. (2019)it
is claimed that the network parameters measured by different apps
(i.e., TEMS Pocket, Qualipoc and Nemo Handy) do not affect the
12
reliability of the results as each of them measure the same parameters,
which are based on 3GPP specifications.

In Mazloum et al. (2021) two apps (i.e., AZQ and JDSU) were
simultaneously used in measuring DL and UL RF-EMF exposures from
4G LTE macro and small cellular networks in two cities (Annecy,
France; and Amsterdam, The Netherlands). They measured and com-
pared performance of reporting downlink (RSRP) and uplink (UE Tx)
exposures as a consequence of using both cellular network types. For
the received exposure (RSRP) from macro cell, AZQ (compared to JDSU
app) overestimated the exposure by 0.8 dB and 2.9 dB in Annecy and
Amsterdam, respectively. For the small cell, AZQ overestimated the
RSRP by 5.2 dB and 2 dB in Annecy and Amsterdam, respectively.
For the UE Tx from macro cell, AZQ (compared to JDSU app (Anon,
2023p)) underestimated it by −3.3 dB in Annecy; and for a small cell it
did so by −1.8 dB and −3.2 dB in Annecy and Amsterdam, respectively.
The authors claim that difference in reporting exposure values by these
two apps (mainly Tx value) can be due to the fact that AZQ accounted
for the total Tx power (data and control signals), while JDSU only
accounted for the signals carrying data. Viavi JDSU product (i.e., JDSU
TrueSite Handheld app), which provided similar measures of the RF-

EMF exposure parameters, has been discontinued (Anon, 2023p) and
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hence we did not provide further discussion on the app. However,
similar intercomparisons of various apps, including 5G NR network
data and different usage scenarios, would be valuable to enhance the
understanding of 5G NR related RF-EMF exposures.

The applicability of these apps for human RF-EMF exposure assess-
ment, including from 5G NR networks, seems promising. Since these
apps provide valuable data on network parameters, such as received
and transmitted power, they could be used in subsequent estimation
of personal exposure for any exposure scenario or mobile technologies
(in Aerts et al. (2013a) and in Mazloum et al. (2021)). These apps
also provide valuable data on the physical layer parameters for both
5G NR and legacy technologies (such as 4G). While 4G technology
is still in common use and 5G technology is its early deployment
phase, a comparison of mobile network throughput of 4G and 5G NR
technologies (Rochman et al., 2022), and associated RF-EMF exposures
in different human environment could be undertaken. Such a study
involving the fourth and 5th generation networks could provide valu-
able information on how much RF-EMF exposure is likely from 5G
NR (compared to 4G), including mmWave in view of 5G NR network
expansion.

5.2. Mobile applications on human studies

The mobile apps have been so far mainly used in different use
case scenarios for RF-EMF signal characterization, particularly for
legacy technologies but also for 5G NR services (to a lesser extent).
Studies have tested these apps to measure RF-EMF signal parame-
ters and/or demonstrate relationship between them in various human
environments, which could be relevant to epidemiological studies;
AZQ (Homayouni et al., 2022; Anchuen et al., 2021; Chobineh et al.,
2018; Mazloum et al., 2018), TEMS, Qualipoc and Nemo Handy (Sae
et al., 2019), Nemo Handy (Mazloum et al., 2018), and so on. To
our best knowledge, we did not find any epidemiological studies that
involve use of these apps. Earlier studies on RF-EMF exposure measure-
ment have used XMobiSense™ app, which has been described elsewhere
n literature. For example, XMobiSense™ was used to evaluate/validate
F-EMF exposure parameter or proxy measure of RF-EMF exposure
uch as recall of mobile phone usage (Goedhart et al., 2018) or self-
eported mobile phone use (Goedhart et al., 2015) in human population
amples, respectively. XMobiSensePlus™ is an updated version of the
pp unveiled for similar application (Mazloum et al., 2020). Quanta
onitor™, has been used in characterizing downlink and uplink (from
mobile phone handset) from mobile phones, however, its validation is

imited in literature (Bhatt et al., 2018). We did not describe these apps
or the reason that there is no clear indication that the apps could be
sed for assessing 5G NR related exposure parameters. The application
f mobile apps for epidemiological studies could be possible through
direct estimation of exposure parameter values by using the apps in
sample of human subjects (e.g., pilot or validation studies) or use

f the app collected data (e.g., through pilot or validation studies)
n estimating personal or population RF-EMF exposures. A large-scale
pplication of these apps in current and future epidemiological studies
s challenging also because these apps are expensive.

. Use cases

The different categories of measurement instruments discussed in
he previous sections can be employed in various ways, each serving
ifferent objectives. The overall measurement uncertainty is influenced
ot only by the characteristics of the measurement device, as outlined
arlier, but also by the specific measurement conditions, including
13

ethodology, environmental factors, and sources.
6.1. Stationary measurements

When an accurate assessment of RF-EMF exposure is required,
such as for compliance assessments, measurements are typically con-
ducted at one location at a time. These measurements last for the
duration specified by international standards (e.g., ICNIRP, FCC/IEEE)
or national legislation. Spectrum analyzers, often accompanied by an
electric-field probe and a laptop, are commonly used for this pur-
pose (IEC 62232:2022, 2022). Alternatively, broadband probes may
also be employed in these spot measurements, either to obtain a rapid
exposure level reading or to scan the area or volume to identify the
location with the highest exposure (IEC 62232:2022, 2022).

Stationary measurements are associated with the lowest inherent
measurement uncertainty since the measurement circumstances can be
controlled to a great extent. Utilizing a SA, it is often possible to achieve
an expanded uncertainty (at a 95% confidence interval) of ±3 dB,
which includes the measurement conditions (e.g., Joseph et al. (2012a)
referring to CENELEC). However, according to Kim et al. (2012), the
expanded uncertainty in the context of ‘‘evaluating RF electromagnetic
field exposure levels from cellular base stations’’ was estimated to be
±3.82 dB, encompassing measurement conditions. The primary contrib-
utor to this uncertainty is the calibration of the measurement device,
with an uncertainty value of 3 dB. Unfortunately, Kim et al. (2012)
does not provide further details on this aspect. In general, an expanded
uncertainty of 4 dB is considered the ‘‘industry best practice’’ (ITU-K61,
2018).

When the experimenter carries the measurement device, such as a
broadband field meter or a portable SA like the SRM-3006, in their
hands, the impact of the experimenter’s body can introduce additional
uncertainty. According to Kim et al. (2012), the uncertainty associated
with the influence of the body was determined to be 0.22 dB when
the distance was between 1–2 m. It is worth noting that a maximum
expanded uncertainty of +3.1 / −4.9 dB has been reported for the
combination of the Narda SRM-3006 with the 3502/01 electric-field
probe (Narda, 2018), although there is uncertainty regarding whether
this figure includes measurement conditions like carrying the device.

6.2. On-body measurements

When there is a need for personal, on-body exposure assessment,
the tools of choice are PEMs and measurement nodes, which can vary
from exposimeters carried on the hip to a network of measurement
nodes distributed over the body (Jalilian et al., 2019). These on-body
measurements can also provide insights into in-body exposure, partic-
ularly in terms of the specific absorption rate (SAR) (Thielens et al.,
2015). Over the years, on-body measurements have been instrumental
in evaluating exposures in various microenvironments, involving vol-
unteers or trained experimenters who carry these devices during their
daily routines (Velghe et al., 2021; González et al., 2021).

When positioning measurement devices on the body, the body’s
influence can result in two opposing effects. On one hand, it may
lead to an underestimation of exposure due to shadowing if the ex-
posimeter is on the opposite side of the body from the source. On
the other hand, it can lead to an overestimation due to constructive
interference with waves reflecting off the body, especially when the
exposimeter is in the line of sight of the source (Bolte et al., 2016). This
necessitates the application of a body correction factor, which must be
determined individually and tailored to specific microenvironments or
activities, making it a complex factor to apply accurately (Bolte et al.,
2016). Consequently, this contributes to a significant level of measure-
ment uncertainty, ranging from a standard uncertainty of 5.3 dB to
12.2 dB (Bolte et al., 2016). To enable the comparison or combina-
tion of personal measurements, even from different units of the same
type, systematic biases often need correction, typically through mul-
tiplicative correction factors, while striving to minimize measurement

uncertainties (Bolte et al., 2016).
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Table 7
Typical uncertainty values for commercial and custom-made broadband field meters and area monitors.

Commercial Mavromatis et al. (2009, 2010) Viani et al. (2016) Pinel et al. (2020)

Flatness of frequency response 1–5 dB 14.46% (1.2 dB) 2.6 dB 1.5–3 dB
Linearity deviation 0.3–3 dB 11.13% (0.9 dB) 4.1 dB 1.5 dB
Isotropic deviation 0.3–3.8 dB 3.54% (0.3 dB) 1.4 dB not provided
Temperature response 0–1 dB 2.27% (0.2 dB) 0.45 dB not provided
Modulation error not provided 10% (0.8 dB)a not provided not provided
Crest factor error not provided 10% (0.8 dB)a not provided not provided

a Typical values: BUWAL (Schweizer Bundesamt flir Umwelt, Wald und Landschaft): Mobilfunk-Basisstationen (UMTS-FDD), Messempfehlung,
Entwurfvom 17.9.2003 (Mavromatis et al., 2009).
To reduce measurement uncertainty, two strategies have been rec-
mmended. One approach is to wear two PEMs on opposite sides of
he body, which can result in an approximately 3 dB reduction in
ncertainty (Thielens et al., 2014). Another approach involves using
PEM equipped with multiple antennas, sensors, or PDEs, as proposed

n Thielens et al. (2013). Additionally, to specifically assess RF exposure
n the head, a PDE-helmet was introduced in Thielens et al. (2018).

.3. Vehicle-mounted measurements

When the objective is to gain a general understanding of the dis-
ribution of RF-EMF exposure across extensive geographical areas (or
olumes) or to identify exposure hotspots, various types of measure-
ent devices can be transported using vehicles, such as cars (Aerts

t al., 2022; Bolte et al., 2016; Estenberg and Augustsson, 2013; Wang
t al., 2022; Sagar et al., 2018; Onishi et al., 2023), drones (Joseph
t al., 2016; Necz et al., 2021; García-Cobos et al., 2023), and bicy-
les (Thielens et al., 2018; González-Rubio et al., 2016). This approach
o measurement is commonly referred to as the ’drive test method,’
nd relevant recommendations can be found in ITU-T Recommendation
.113 (2015).

The position of the measurement device on the vehicle can signif-
cantly influence the measurement, requiring the determination of an
dditional vehicle correction factor (Bolte et al., 2016; Estenberg and
ugustsson, 2013). However, there are (at least) two other factors that
an impact the measurement result (Estenberg and Augustsson, 2013):

• The temporal variation of the field strength due to signal char-
acteristics (e.g., pulsed signals in 2G-GSM and OFDM modulated
signals in 4G-LTE and 5G NR) or multipath fading caused by
reflections from moving objects.

• In most cases, the three electric field components are sequentially
measured and then combined, with the distance between these
measurements spanning several meters (e.g., 3–4 m in Wang et al.
(2022)), determined by the sample rate and vehicle speed.

.4. Distributed network measurements

To monitor the RF exposure over time, a distributed network of
tationary measurement nodes (or sensors or sensor nodes) (Aerts
t al., 2022; Estenberg and Augustsson, 2013; Diez et al., 2015),
roadband probes (Iakovidis et al., 2022; Seyfi, 2013), (selective) area
onitors (Iakovidis et al., 2022), or even commercial exposimeters (al-

hough only for 24 h) (Vermeeren et al., 2013) may be distributed over
n area of any size. Aspects of remote monitoring are described in Šuka
t al. (2015) – although they are outdated – and recommendations
or monitoring of electromagnetic field levels are provided in ITU-K83
2022), and recommendations on placement and analysis in Aerts et al.
2022).

These measurement devices can be installed in multiple ways, such
s on building rooftops, street furniture, or on building facades (Aerts
t al., 2022; Iakovidis et al., 2022). The height and specific placement
f these devices can significantly affect measurements, particularly
hen placed near objects like walls or street lamps, which can in-

roduce varying degrees of shadowing since exposure is commonly
ssessed at a 1.5 m height above the ground (IEC 62232:2022, 2022).
14
For each measurement node, an ‘‘installation correction factor’’ is deter-
mined (Aerts et al., 2022; Iakovidis et al., 2022), accounting for these
factors.

6.5. Measurement uncertainty

Commercial equipment datasheets typically include information on
the following parameters, which may vary in detail: flatness of fre-
quency response, linearity deviation, isotropic deviation, temperature
response (though not always provided). The estimation of correction
factors for non-standardized measurements is a necessary step for those
factors, and it involves calibration through the measurement of a
known electromagnetic field (Anon, 2013).

An extensive analysis of the uncertainty budget for broadband field
meters was carried out in Oliveira et al. (2006), resulting in expanded
uncertainties that range from 2.38 dB (excluding linearity) to 4.40 dB.
This range incorporates additional uncertainty factors of 0.8 dB to
1 dB attributed to ‘‘absolute error’’ and 0.5 dB (equivalent to 15%) for
‘‘calibration’’. The calibration values were derived from the calibration
certificates provided by the products.

In the literature discussing laboratory-built devices, the treatment of
uncertainty varied from being ‘‘absent’’ (Leferink, 2013) to being ‘‘fully
detailed’’ (Mavromatis et al., 2009, 2010). The more comprehensive
discussions yielded expanded uncertainties ranging from 1.9 dB to
2.5 dB, which appears lower in comparison to the values reported
in Oliveira et al. (2006). An outline of typical uncertainty values is
presented in Table 7.

As indicated in Celaya-Echarri et al. (2020), there is a lack of re-
search on the measurement uncertainty associated with PEMs, although
some studies have delved into this area, such as those by Bolte et al.
(2011) and Blas et al. (2007). The primary sources of measurement
uncertainties depend on the specific measurement scenario as described
earlier. However, it is noteworthy that device-specific measurement un-
certainties are often not disclosed by manufacturers, a trend observed
for both commercially available and lab-built devices. For instance,
Fields at Work notes a crosstalk between frequency bands ranging from
−40 to −60 dB for the ExpoM-RF series but does not provide any
information regarding uncertainties related to antenna isotropy, field
strength linearity, frequency response flatness, and similar parameters.

6.6. Discussions regarding use in 5G exposure assessment

As of the current writing, there are four European projects (NextGEM
(Petroulakis et al., 2023), SEAWave (Anon, 2024f), ETAIN (Anon,
2024b), GOLiAT (Anon, 2024d)) that constitute the European Research
Cluster on EMF and Health (CLUE-H) (Anon, 2024a), which are actively
conducting assessments of RF-EMF exposure in 5G networks (covering
both FR1 and FR2).

These assessments involve the use of newly developed or cutting-
edge measurement equipment (Minucci et al., 2022) and innovative
or recently updated measurement protocols, whether standardized (IEC
62232:2022, 2022) or not (Velghe et al., 2021).

Following the deployment of commercial 5G NR networks various
types of devices mentioned earlier have been employed to evaluate
the electromagnetic fields emitted by the new BSs. For 5G-FR1, the
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same equipment can be used for assessing RF-EMF exposure within the
frequency range up to 6 GHz, similar to their use in evaluating exposure
in legacy networks (ranging from 2G to 4G). The exception is the
need for a 5G-enabled mobile phone UE to induce maximum exposure
conditions (Aerts et al., 2019) or at the very least, to assess auto-
induced personal exposure (Velghe et al., 2021). For 5G-FR2, different
probes for broadband field meters and spectrum analyzers, alternative
antennas for measurement nodes, and other hardware such as harmonic
mixers for spectrum analyzers are necessary.

To obtain a comprehensive evaluation of the theoretical worst-
case exposures in 5G NR networks, specialized equipment like SAs or
network scanners is essential. This is due to the significant stochastic
nature of 5G NR wireless communications, which arises from factors
like massive, interactive, and agile beamforming and a reduction in
independently transmitted signals, affected by current traffic load and
user behavior (Keller, 2019).

Current state-of-the-art techniques, whether frequency- or code-
selective, rely on extrapolating measurements of signals that are inde-
pendent of traffic load, such as the SSB. These methods are exclusively
assessable using high-end measurement equipment (Fellan and Schot-
ten, 2022). These techniques have been demonstrated for both FR1
and FR2, and a comprehensive overview can be found in Fellan and
Schotten (2022).

It is worth noting that in the case of FR2, directive horn antennas
are frequently employed rather than isotropic probes to increase re-
ceiver gain and mitigate the higher path loss at these high frequencies
while minimizing the influence of the user equipment (Celaya-Echarri
et al., 2020; Minucci and Verbruggen, 2022; Wood et al., 2021; Chiar-
aviglio et al., 2022; Anon, 2021c; Liu et al., 2024), although this
is not always the case (Wali et al., 2022). When using horn anten-
nas, it is important to ensure dual-polarized measurements, either
by using a dual-polarized antenna or by turning a single-polarized
antenna (Celaya-Echarri et al., 2020). In the case of single-axis om-
nidirectional antennas (Wali et al., 2022; Liu et al., 2024), rotating
the antenna is necessary to ensure accurate measurements for different
polarizations (Celaya-Echarri et al., 2020). However, measuring the RF-
EMF in 5G networks as is (i.e., without extrapolation) is also done with
the other types of measurement devices discussed previously.

Although it was noted in Letertre et al. (2013) that ‘‘diode-detector-
based probes are unsuitable for signals with relatively high power
and time variations’’ and subsequently demonstrated experimentally
in Adda et al. (2022) that these probes tend to overestimate the
amplitude of 5G-FR1 signals (by ‘‘tens of percent of the electric-field
strength’’) due to their high crest factor, the use of broadband field me-
ters is still recommended to ensure ‘‘a reliable assessment of the current
total exposure’’ (IEC 62232:2022, 2022; Keller, 2019). In fact, several
5G-FR2 (operating at 26 GHz and 60 GHz) measurement campaigns
have employed broadband field meters with isotropic probes (Wood
et al., 2021; Agence Nationale des Fréquences, 2021; Ofcom technical
report, 2020), despite their sensitivity limitations (at least 0.7 V/m) and
the challenges posed by the large signal bandwidth (Adda et al., 2022).

Moreover, the latest generation of commercial PEMs can now mea-
sure the 5G-FR1 bands (Selmaoui et al., 2021). However, due to the
growing importance of auto-induced exposure, PEMs alone are no
longer sufficient to assess personal exposure, necessitating the use
of additional equipment like a mobile phone (Velghe et al., 2021).
Unfortunately, there is currently a lack of published data regarding
the reliability of PEMs when measuring 5G-FR1 signals. Furthermore,
there are no commercially available exposimeters for the 5G-FR2 band.
In Thielens et al. (2017), the feasibility of PEMs for mmWaves was
discussed, and in Anon (2023m,e) two different versions of a mmWave
personal exposimeter (mm-PEM) are introduced operating at 60 GHz,
although these have not been field-tested. Similarly, the PDE has not
been adapted to measure 5G-FR1 bands.

The 5G-FR1 bands can be measured directly by many European
measurement networks, comprising area monitors equipped with broad-
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band probes that can measure up to 7–8 GHz (Iakovidis et al., 2022),
or broadband measurement nodes (Iakovidis et al., 2022; Pinel et al.,
2020), with no need for specific modifications. Nevertheless, they
encounter similar limitations as broadband field meters because the
probes they employ also incorporate diode-based detectors.

Lastly, the most recent versions of lab-built measurement nodes
either encompass some of the 5G-FR1 bands (Minucci et al., 2022)
or are purpose-built to exclusively measure the 5G-FR1 bands (Santi-
ago Rivera et al., 2018). It is important to mention that when designing
these nodes, tRMS detectors are the preferred choice (Minucci et al.,
2022). As far as the authors are aware, there are no measurement nodes
available, whether commercially or in a lab setting, that are capable of
measuring the 5G-FR2 bands at the moment.

7. Conclusions

The objective of this review was to establish a groundwork for
progress in the field of RF-EMF exposure assessment, ultimately con-
tributing to a more thorough and efficient assessment. This review
provides a comprehensive overview of the current state-of-the-art con-
cerning RF-EMF measuring instruments. It covers a wide array of tools,
such as spectrum analyzers, broadband field meters, area monitors,
personal exposimeters, and custom-built instruments, as well as the
existing measurement protocols, encompassing both standardized and
non-standardized methods. In addition, we also have presented some
of the most commonly used mobile apps for collecting 5G NR radio
network data, which have also been used in RF-EMF exposure assess-
ments. However, it is not yet clear on how accurate the measurement
results of these apps are and how they compare among themselves and
to more sophisticated tools.

Most importantly, this review revealed the need for cost-effective
and long-lasting measurement devices or sensors that are capable of
collecting data at a high time resolution in various frequency bands, as
well as withstanding various environmental conditions. These sensors
are essential for conducting stationary, mobile, and personal exposure
assessments across larger geographical areas, time intervals, and pop-
ulations than current capabilities allow. Additionally, it is important
to recognize that the specific requirements for these sensors differ
based on their intended usage, e.g., on-body measurement devices
need to take into account the influence of the body, vehicle-integrated
sensors the influence of the speed and the relative position of the
sensor on the vehicle, and sensors on infrastructure the influence of the
height and the building materials. Furthermore, there exists a demand
for real-time, fast-sampling solutions to comprehend the highly irreg-
ular temporal variations in EMF distribution within next-generation
networks.

Moreover, there is a notable absence of extensive information re-
garding currently employed custom-developed RF-EMF measurement
tools, particularly with respect to measuring uncertainty. Considering
the diversity of tools and methodologies in use, conducting a thorough
comparison becomes crucial to identify the necessary statistical tools
for aggregating the available measurement data.

A more in-depth discussion relating the current 5G NR assessment
methods to measurement equipment is intended for a follow-up study,
which will describe more in detail the requirements, opportunities, and
priorities for new, low-cost, custom-built measurement equipment.
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protection
IoT Internet of things
FR1/2 Frequency Range 1/2
MaMIMO Massive Multiple-Input Multiple-Output
mmWave Millimeter Wave
NR New Radio
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NSG Network Signal GuruTM
PCI Physical Cell IP
PDSCH Physical Data Shared Channel
PEMs Personal Exposure Meters
RF Radio Frequency
RMS Root-Mean-Square
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RSRQ Reference Signal Received Quality
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Rx Receiver
SAR Specific absorption rate
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