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Many microorganisms are capable of swimming through viscous fluids such as water in order to search
for nutrients, swim towards oxygen or light, or to escape from predators. To navigate their environment
they often perform large nonreciprocal periodic deformations of their shape, by waving appendages such
as cilia or flagella, or by deforming their entire body. Even unicellular organisms are fundamentally made
of parts, which need to be cooperatively utilized to allow these creatures to navigate their environment,
without using a centralized control mechanism. Here, we investigate the physical implications of decentralized
decision-making of the actuators of a generalized N-bead Najafi Golestanian microswimmer, self-propelling via
coordinated non-reciprocal swimming strokes. We treat each bead as an artificial neural network-based agent
that perceives information about its neighbors and whose actions induce strokes of its adjacent arms. With
neuroevolution techniques, we evolve optimal policies for the single-bead decision centers such that the N-
bead collective efficiently self-propels as an individual, allowing us to investigate optimal locomotion policies
for increasingly large microswimmer bodies. We demonstrate that such decentralized policies are robust
and tolerant concerning morphological changes or defects and facilitate cargo transport or drug delivery
applications “out of the box“, without further optimization. Our approach allows us to train large swimmers
(N = 100 and more), and we show that long-wavelength solutions lead to surprisingly efficient swimming
gaits. Our work is of relevance to understand robust locomotion of biological microswimmers, to develop
robust artificial microswimmer navigation strategies, and, in a broader conceptional context, for Artificial
Life and in general emergent levels of individuality.

I. INTRODUCTION

Many microorganisms live in viscous environments and their motion is governed by the physics of low Reynolds
numbers where viscous forces dominate over inertia1–4. As a consequence, a common strategy is to periodically deform
their body shape in a non-reciprocal fashion to swim. To thrive in their environment, they have developed different
tailored strategies to exploit their swimming capabilities, such as actively navigating toward a nutrient-rich source,
hunting down prey, escaping from a predator, or reproducing5,6. Besides of direct biological relevance, understanding
the corresponding navigation strategies of microorganisms bears potential for biomedical or technical applications,
potentially utilized by synthetic microswimmers used as targeted drug delivery systems7.

Nature evolved a large variety of strategies and control mechanisms to deform their shapes in order to swim fast,
efficient, and adaptive to environmental conditions. In particular many eukaryotic cells are capable of complex and
large shape deformations consisting of associated deformation amplitudes and wave lengths on the order of the entire
organism. For example swimming algae cells or sperm cells move with the help of waving cilia or flagella, respectively,
or amoebae such as Dictyostelium8 and unicellular protists such as Euglenia9 by deforming their entire cell body. These
collective large deformations are typically achieved with the help of orchestrated and cooperative action of molecular
motors and many other involved proteins, for example the local deformation of the cilia-forming axoneme5,10. Yet,
such organisms - without an apparent centralized controller - cooperatively utilize their body components to navigate
their environments in order to swim.

Moreover, such decentralized navigation policies tend to be robust and failure tolerant, e.g., if parts of the locomotive
components are disabled or missing, thus showing strong signs of generalizability, as known for example for swarms,
slime molds11, robots12. Such plastic and functional robustness and the innate drive for adaptability seem key features
of biological organisms and evolution in general and, as recently suggested13, the underlying collective decision-making
can be seen as a unifying concept for integrating biology across scales and substrates.

Here we combine low Reynolds number physics and ML assisted computation to better understand functional
behavior of microswimmer locomotion. We thus investigate decentralized yet collective decision-making strategies
of the locomotive parts of a model microswimmer, which represents e.g. an unicellular organism, or a controllable
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FIG. 1. (A) Schematics of an N -bead microswimmer environment, with (B) parametrically identical yet operationally
independent Artificial Neural Networks (ANNs) acting as decentralized decision-making centers (or controllers) to update the
respective internal states of the beads, si → si +∆si (red arrows), and to apply bead-specific forces, Fi ∈ [−2F0, 2F0] (green
arrows; ensuring

∑
i Fi = 0), such that the entire microswimmer self-propels purely based on local perception-action cycles of

the constituting bead controllers. (C) The training progress of optimizing various N -bead microswimmer navigation policies of
type A (see text and fig. 2), respectively identifying for predefined values of (N = 3− 100) the parameters of the morphology-
specific ANN controllers via evolutionary algorithms (EAs). The fitness-score for different N , quantifying a specific N -bead
center of mass velocity v̄ (see sections II and V), is presented over 200 subsequent generations. Opaque-colored areas below
the fitness trajectories indicate the corresponding STD of 10 independent EA searches per morphology and serve as a measure
for convergence for the optimization process.

swimming microrobot. In our simplified approach the microswimmer can only deform in one dimensions by longi-
tudinal extractions and contractions of its body parts, modeled by N aligned beads linked by muscles. For N = 3
our swimmer reduces to the famous Najafi Golestanian (NG) model microswimmer. We use Reinforcement Learning
(RL) to optimize policies for finding efficient shape-deformation based locomotion strategies. In recent years RL has
been employed to microswimmer models and various simple active agents.

The NG swimmer has been used recently as a standard model to employ centralized decisions on shape deformations
based on sensory input of the swimmer’s internal state and its environment, to perform tasks such as learning to swim
or to perform chemotaxis. Since conventional centralized decision-making relies on the (sensory) input and states
of all individual entities (i.e., N beads) to control their actions globally, the dimension of the input vector to the
decision-making machinery, such as artificial neural networks (ANNs), scale with N , which complicates the estimation
of optimum policies by the controlling unit. Thus, while generalized NG swimmers with N > 3 had been employed to
optimize their swimming strokes14–17, they are limited to N ≤ 10. In particular in recent ML studies, increasing the
number of beads N requires exponentially more complex controllers which quickly becomes difficult, if not infeasible
to train with current ML methods.

In our approach we are able to overcome these limitations by employing biologically motivated decentralized decision-
making that allows us to extend our swimmers to much larger N than previously feasible, allowing us to identify
locomotion strategies in the limit N → ∞. To this end, we interpret each bead of this collective swimmer as an agent
that can only perceive information about its adjacent beads and whose actions induce contractions or extensions of
its adjacent muscles. We substitute the internal decision-making machinery of such single-bead agents by ANNs, and
employ genetic algorithms and neuroevolution to machine learn optimal policies for such single-bead decision-making
centers such that the entire N -bead swimmer can efficiently self-propel collectively, i.e., in a decentralized way.

We show that such policies are robust and failure-tolerant concerning morphological changes of the collective
microswimmer and that such decentralized policies - trained for microswimmers with a specific number of beads -
generalize well to (vastly) different morphologies.

II. SYSTEM

A. The N-Bead Swimmer Model

Here, we investigate swimming strategies optimized by RL and the corresponding physical implications of N -bead
generalized NG18 swimmer models moving in a fluid of viscosity µ with local and bounded energy input. The swimmers
consist of N co-centrically aligned spheres of radius R located at positions xi(tk), i = 1 . . . , N , at time tk = k∆t, k =
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1, . . . , Nt, that are connected pairwise by massless arms of length li(tk) = |xi+1(tk)−xi(tk)|, as illustrated in fig. 1 (A).
The swimmer deforms and moves by applying time-dependent forces Fi(tk) = (F a

i (tk) + F r
i (tk)) ∈ [−2F0, 2F0] on

the beads, where F0 defines the force scale in our system. The active forces F a
i (tk) are proposed by RL agents (see

below), and passive restoring forces16 F r
i (tk) are applied when arm lengths li(tk) becomes smaller than 0.7L0 or lager

than 1.3L0, where we choose L0 = 10R as the reference arm length. The swimmer is force-free,
∑

i Fi(tk) = 0,
ensured by our procedure (see below), and the bead velocities vi(tk) are obtained in the Oseen approximation19,
vi = ẋi = Fi/(6πµR) +

∑
j ̸=i Fj/(4πµ|xi − xj |) (for details see Sec. section VA).

B. Modeling system-level decision-making with decentralized controllers

To identify the active forces F a
i (tk) on the beads, we assign an ensemble of independent yet identical controllers

to every bead which respectively can only perceive local information about adjacent beads (such as distances and
velocities of their neighbors) and propose actions to update their respective states (such as proposing bead-specific
forces to update their own positions), but with the shared objective of collectively self-propelling the entire N -
bead swimmer’s body. More specifically - as illustrated in fig. 1 and detailed in section V B - for each time tk the
controller associated with the bead i perceives its left- and right-neighbor distances, Li(tk) = {li(tk), li+1(tk)}, and
its own- and the neighboring beads’ velocities, Vi(tk) = {vi−1(tk), vi(tk), vi+1(tk)}. Moreover, each bead maintains
an internal vector-valued state, si(tk). This state can be utilized by every controller to store, update, and actively
share recurrent information with other beads that is not necessarily bound to the physical state of the swimmer but
an emergent property of the collective RL system: Every controller thus perceives its neighboring states, Si(ti) =
{si−1(tk), si(tk), si+1(tk)}, additionally guiding the former’s decision-making. In total, the perception of a single bead
agent is given by pi(tk) = {Li(tk),Vi(tk),Si(tk)}.

After integrating information about its local environment pi(tk), the controller of each bead i computes, and then
outputs an action, ai(tk) = {ϕi(tk),∆si(tk)}, comprising a proposed active force, ϕi(tk), and an internal state update,
si(tk+1) = si(tk) + ∆si(tk) (see Fig. fig. 1). Notable, the proposed forces are limited to ϕi(tk) ∈ [−F0, F0] and hence
set the force scale and maximum power consumption of the swimmer. To model a force-free swimmer, we propose
two different methods how the mapping between the proposed forces ϕi(tk), and the actual active forces F a

i (tk), is
achieved:

First, we interpret the proposed forces as pairwise arm forces ϕi(tk) and −ϕi(tk) applied between two consecutive
beads i and i + 1, respectively (see fig. 2). This leads to the actual active forces F a

i (tk) = (ϕi(tk)− ϕi−1(tk)) ∈
[−2F0, 2F0] for beads i = 2 . . . , (N − 1), and F a

1 (tk) = ϕ1(tk) ∈ [−F0, F0] and F a
N (tk) = −ϕN−1(tk) ∈ [−2F0, 2F0].

This automatically ensures
∑N

i=1 F
a
i (tk) = 0. In this sense, the proposed actions can be understood as local decisions

to expand/contract muscles between the beads.
Second, we assume that the proposed force ϕi(tk) of every controller directly targets the actual force applied to its

associated bead, but, in order to fulfill the force-free condition, we subtract the mean ϕ(tk) = 1
N

∑N
j=1 ϕj(tk) from

every proposed force and arrive at F a
i (tk) =

(
ϕi(tk)− ϕ(tk)

)
, again with F a

i (tk) ∈ [−2F0, 2F0].
Hence the first approach ensures the global force-free condition via a series of locally annihilating pair-forces

motivated by biological force dipole generation at small scales that cause the arms between the corresponding beads i+1
and i to contract or extend. In contrast, the second approach using the regularization by collective feedback (via ϕ(tk))
can be interpreted as a mean-field approach which may be used by external controllers for artificial microswimmers20.
Henceforth, we refer to the first scenario as type A, and to the second scenario as type B microswimmers, and alike
for the corresponding self-navigation strategies or policies. In fig. 2, we schematically visualize how type A and B
microswimmers execute their respective force-free conditions.

Following RL terminology, we refer to the mapping between perceptions and actions of an agent (or here syn-
onymously, a controller) as the latter’s policy, πi : pi(tk) → ai(tk). In general, such a policy is a complicated and
complex function of the input, and Artificial Neural Networks (ANNs) as universal function approximators21 are
well-suited tools to parameterize these objects for arbitrary agents and environments (see section VB). Thus, we
approximate the RL agent’s policy πi by an ANN, formally expressed as a function fθ(·) with parameters θ, such
that ai(tk) = fθ(pi(tk)). More specifically, we treat a single N -bead swimmer as a multi-agent system, each bead
being equipped with an independent but identical ANN-based controller, fθ(·), reminiscent of a Neural Cellular Au-
tomaton22,23 (NCA), where the union of the decentralized actions of all individual controllers give rise to a collective
policy Π = {π1, . . . , πN} ≈ {fθ(p1(tk)), . . . , fθ(pN (tk))}, of the entire virtual organism (see also24). Notably, only a
single set of parameters θ is used for all N bead-specific agents, i.e., the same ANN controller is deployed to every
bead (the states of the latter only differ in their initial conditions and dynamical input-output-relations). For our
purposes, this renders the optimization problem much more tractable compared to situations with a single centralized
controller, Π̃ ≈ f̃θ̃(p1(tk), . . . ,pN (tk)), especially for large swimmer morphologies.
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FIG. 2. Schematics of mapping the bead-specific proposed actions ϕi(tk) to the proposed active forces F a
i (tk) to ensure the global

force-free condition
∑N

i=1 F
a
i (tk) = 0 (see text) by either interpreting the actions as force-pairs F a

i (tk) = (ϕi(tk)− ϕi−1(tk))

between neighboring beads (left, type A microswimmers), or subtracting the global average ϕ̄(tk) =
1
N

∑N
i=1 ϕi(tk) from every

proposed, bead-specific action F a
i (tk) =

(
ϕi(tk)− ϕ(tk)

)
(right, type B microswimmers).

Here, we aim at identifying optimal and robust swimming gates for arbitrarily large N -bead swimmers, which
translates to finding suitable ANN parameters, θ(opt), such that the bead-specific perception-action cycles, ai(tk) =
fθ(opt)(pi(tk)), collectively self-propel the multi-agent system efficiently in a certain direction. Thus, we utilize evolu-
tionary algorithms (EAs)25–28, specifically a simple genetic algorithm29 discussed in section VC, to adapt the ANN
parameters (but not the ANN topology16) such that the entire N -bead swimmer’s mean center of mass (COM) veloc-
ity, v = 1

N T

∣∣∣∑N
i=1 (xi(T )− xi(0))

∣∣∣, is maximized for a predefined swimming duration T = NT∆t, chosen sufficiently
large to provide the respective N -bead swimmer enough time to approach a steady swimming sate and to execute
several swimming strokes, starting from randomized initial positions in Ne = 10 independent swimming episodes, see
section V C for details. Thus, we define the objective, or fitness score as the episode-averaged mean COM velocity
r = ⟨v⟩Ne

, and search for θ(opt) = maxδθ(r) through variation δθ of the parameters θ via EAs.

III. RESULTS

A. Individual, bead-specific decisions facilitate collective swimming of an N -bead swimmer

We utilize EAs to optimize the (≈ 50) parameters of the ANN-based controllers (which are deployed to every bead
in a specific morphology) for different realizations of the above-defined N -bead (multi-agent) microswimmer model
(c.f., fig. 1 (A,B)). More specifically, we deploy morphologies ranging from N = 3 to N = 100 beads of both type
A and B microswimmers and train every swimmer length N for both types independently via EAs, such that the
corresponding N -bead collectives self-propel at a respective maximal mean COM velocity v̄, maximizing the fitness
score r; for details on the utilized ANNs and the applied EA we refer to sections II and V.

The training progress for type A microswimmers with different length N is presented in fig. 1 (C). It demonstrates
that the proposed decentralized decision-making strategy allows for finding fast swimming gates for all the considered
swimmer lengths up to N = 100. Thus, our method is able to remove the bottleneck for machine-learning navigation
policies of large-scale microswimmers by employing computationally manageable local ANN-based perception-action
loops of their bead-specific agents.

To the best of our knowledge, this is the first time successful training of microswimmers with such a large number
of degrees of freedom has been achieved.

B. Different strategies of autonomy: Large-scale coordination enables fast swimming

As depicted in fig. 3 (A,B), the COM velocities v̄ of both type A and B microswimmers monotonously increase
with the body size, i.e. number of beads N . We normalize all velocities here with v0 = 2F0/(6πµR), i.e. the velocity
a bead would have it it dragged by an external force of strength 2F0. Interestingly, type B swimmers are significantly
faster compared to type A swimmers by almost one order of magnitude, especially for large N . As illustrated in
fig. 3 (A), for type A microswimmers with locally ensured force-free conditions, the mean COM velocity v̄ saturates
with increasing N at v̄max/v0 ≈ 0.03 for N = 100. In contrast (c.f., fig. 3 (B)), the fastest type B microswimmer
(again at N = 100) achieves a maximum COM velocity of vmax/v0 ≈ 0.15.
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FIG. 3. (A) and (B): COM velocity, v̄, of different type A and B microswimmers, respectively, corresponding to their
final fitness score when optimized independently with EAs for N = 3 to N = 100 beads (see also fig. 1 (C)). Insets show
COM trajectories, and (F a

1 , F
a
3 )- and (l1, l2)-phase-space plots for N = 3 (see blue circles). (C) and (D): Typical bead-

specific coordinate- (top panels) and force-trajectories (bottom panels) of an (N = 15)-bead type A and an (N = 100)-bead
type B microswimmer, respectively (the examples, see red circles in (A, B), are chosen for illustrative purposes and are
representative for all investigated N for both type A and B policies). Insets detail the corresponding COM trajectories. For
type A microswimmers (A, C), periodic localized waves of arm strokes travel through the body. In contrast (B, D), large-
scale collective body contractions allow large type B microswimmers to propagate much faster. Coordinate trajectories are
normalized by the resting arm length L0 in the insets of (A,B), and by the body-length LB = L0 × (N − 1) in (C,D).

These significant differences in the swimming velocities for type A and B swimmers are due to the different con-
straints on how the forces can be applied to the beads. The insets in panels (A, B) show results for the well-studied
three-bead swimmer (N = 3). First, they show the well-known periodic 1-step-back-2-step-forward motion of the
COM trajectory. Second, the corresponding steady state phase space dynamics of the active forces on beads 1 and 3,
(F a

1 , F
a
3 ), and of the arm lengths (l1, l2), reiterating the periodic motion. Note that the force on bead 2 simply follows

from F a
2 = −F a

1 , F
a
3 .

In panels (C) and (D) we present trajectories of both the COM and bead-specific coordinates (top panels; respective
insets emphasize the COM dynamics), and of the bead-specific proposed forces (bottom panels) for an (N = 15)-
bead type A- and (N = 100)-bead type B microswimmer, respectively. These selected trajectories demonstrate the
genuinely different swimming strategies for type A and B microswimmers (which have notably been optimized with
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the same EA settings).
In type A microswimmers (fig. 3 (C)), the pairwise arm forces induce periodic waves of arm contractions of relatively

high frequency but small wavelength, which travel through- and push forward the body of the N -bead microswimmer.
For sufficiently large beads N this leads to a relatively smooth and linear COM motion (see inset in fig. 3 (C)).

In stark contrast, the fastest swimming strategies for type B microswimmers (fig. 3 (D)) assumes coordinated arm
strokes across large fractions of their bodies, essentially contracting and extending almost the entire body simultane-
ously, which is reflected in the oscillatory COM motion even for very large N (see inset in fig. 3 (D)). This large-scale
coordination exceeds the capabilities of the locally interlocked policies of type A microswimmers and strikes us as an
emergent phenomenon30 which - still based on purely local decision-making - is facilitated by the mean-field motivated
feedback of the mean proposed force of all the agents in the system: type B microswimmers seemingly act as a single
entity31, despite the fact that the precise number of constituents, N , is not important and can vary.

As shown in fig. 3 (C) and (D), typical policies of the respective type B swimmers are reminiscent of the large am-
plitude contraction-wave based locomotion of crawling animals such as caterpillars. Similarly, the crawling locomotion
of crawling fly larvae had been optimized using RL recently32.

C. Transferable evolved policies: decentralized decision-making generalizes to arbitrary morphologies

We recently showed33 that biologically inspired NCA-based multi-agent policies - especially when evolved via
evolutionary processes - can display behavior that is highly robust against structural and functional perturbations
and thus exhibit increased generalizability, adaptability, and transferability. We thus investigate here, whether our
decentralized locomotion policies - genuinely evolved for microswimmer bodies with exactly NT beads - generalize to
morphological changes. More specifically, we deploy - without any retraining or further adaptation - ANNs that have
been optimized for a particular number of NT beads into microswimmer bodies with a different number of N beads
instead and evaluate the corresponding swimming velocities for such cross-policy environments, now for N = 3 to 300.

Remarkably, as illustrated in fig. 4(A) and (B), we find that the vast majority of all policies that are most optimal
for a particular value of NT are also highly effective in self-propelling (N ̸= NT)-bead microswimmers for both type
A and B, respectively. This even holds for situations where NT ≪ N , such as NT = 3 and N = 300. Notably,
we did not explicitly optimize for this quality at all, but it is an emergent phenomenon of the inherent decentralized
decision-making of the system. Thus, the collective nature of the here proposed swimming policies renders the evolved
locomotive strategies highly adaptive to morphological changes, virtually irrespective of the specific number of beads
N used during deployment.

Moreover, the set of policies evolved- and deployed for different bead numbers of NT and N , respectively, allows us
to estimate a transient trend for optimal swimming gates for large N : if unperturbed and starting from proper initial
conditions, the arm-lengths li(tk) of an arbitrary trained NT-bead swimmer describe limit cycle dynamics (c.f, fig. 3).
Assuming that all arms oscillate at the same angular velocity ω̄, and exhibit the same cross-correlation times τ̄ to their
neighboring arms li(tk) and li+1(tk+ τ̄), we can express each of the i = 1, . . . , N arm lengths as a 2π-periodic function
l̂i(t) = fℓ ((t− i τ̄) ω̄ + ϕ), with the phase shift ϕ defining the initial conditions (which we ignore henceforth); for more
details about ω̄ and τ̄ we refer to section V D. Notably, we can also write l̂i(t) in the form of a wave-equation as
l̂i(t) = fℓ

(
tω̄ + 2πi/λ̄+ ϕ

)
, where the bead index i controls the “spatial” oscillations at a (dimensionless) wavelength

λ̄ = 2π
ω̄τ̄ irrespective of the corresponding physical bead positions xi(tk).

In fig. 4 (C, E, G), we respectively present ω̄, τ̄ , and λ̄ for the fastest type A microswimmers as a function of N
(blue circles), additionally to the training conditions where N = NT (magenta “×” symbol); panels (D, F, H) show
the analogous analysis for type B swimmers. We see that all three quantities behave very differently for type A and
B: for type A (see fig. 4 (C, E, G)), a careful analysis reveals a minute transient logarithmic behavior of ω̄ ≈ a lnN +b
with a = −5.26× 10−3 rad/∆t and b = 1.13× 10−1 rad/∆t, an almost constant value of τ̄ ≈ 12.2 ∆t, and a transient
logarithmic behavior of λ̄ ≈ a lnN + b with a = 2.37 × 10−1 and b = 4.64. In contrast, for type B (see fig. 4 (D, F,
H)), the angular velocity follows a power law behavior ω̄ ≈ αNβ with α = 3.92× 10−1 rad/∆t and β = −8.19× 10−1,
and λ̄ ≈ αNβ follows again a power law behavior with α = 1.33 and β = 9.17× 10−1. Notably, the evaluated τ̄ values
for type B microswimmers (fig. 4 (F)) exhibit a more complex pattern, but can be evaluated and thus functionally
described by ω̄ and λ̄.
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magenta × symbols illustrate ω̄ for the corresponding training conditions, N = NT. (E,F) and (G,H): Similar to (C,D),
but showing the mean cross-correlation time, τ̄ ((E,F), see text), between neighboring arms, li(t) and li+1(t + τ), and the
corresponding (dimensionless) wavelength, λ̄ ((G,H), see columns in lower panels of fig. 3 (C, D) at fixed time tk and see text)
of type A and B microswimmers, respectively, as a function of N . Dashed lines indicate functional fits (see text).

D. Large-scale coordination leads to efficient locomotion

In our approach we limit the maximum forces on each of the beads, and thus the maximum bead velocities. This
procedure is somewhat similar as fixing the total power consumption of the swimmer. In previous optimization
procedures on 3- and N-bead swimmers commonly the swimming efficiency is optimized14,34, where e.g. the power
consumption of the entire swimmer is taken into account as a single quantity. In contrast, in our work we set local
constraints on the swimmer by limiting the forces on every bead. Although we hence did not optimize in our RL
procedure for the efficiency, we measure the efficiency η of our swimmers, determined by η = 6πµReff v̄

2/P where
P = 1

T

∫ ∑
i vi(t)Fi(t)dt is the stroke-averaged power consumption. There is no unique way to define the effective

radius of our swimmer (see also the discussion in Ref.34), and it is hence not straightforward to compare the effective
radius of swimmers of different size N . we choose here Reff = NR which reflects the combined drag on all of the
spheres (neglecting hydrodynamic interactions). The power consumption is naturally limited to be P < Pmax with
Pmax = 2NF0v0 = 2NF 2

0 /(6πµR), for both cases type A and B. However type B swimmers can exploit their higher
freedom to adjust the forces on the beads compared to the arm-force-limited type A swimmer to locomote at higher
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FIG. 5. (A) and (B): efficiency η of the most optimal N -bead type A and B microswimmers (blue circles), respectively; magenta
× symbol emphasize the efficiency of microswimmers trained with N = NT. While for type A microswimmers, the efficiency
plateaus at η

(a)
max = 1.2× 10−3 for large N , especially the large type B microswimmers show biologically realistic efficiencies 1

of up to η
(b)
max = 1.5× 10−2. (C) and (D): mean COM velocity per bead v̄/N for the respective type A and B microswimmers.

The insets show that the transient decline of the COM velocity per bead follows a power law, (v̄/v0)/N = αN−β , with
α = 2.34× 10−2, β = 9.53× 10−1 (C) and α = 2.83× 10−2, β = 6.41× 10−1 (D), c.f., black dashed fits.

speed, and hence at higher efficiency η. As seen in fig. 5 (A,B) for both type A and B swimmers the efficiency increases
with swimmer length N and levels off at large N . The efficiency is quite low for all swimmer lengths N for type A
swimmers, and levels off at ≈ 0.1%. In contrast, long type B swimmers can reach surprisingly high efficiencies of even
> 1%, which is quite efficient and comparable to the efficiency of real existing microswimmers1.

As we discussed, a larger microswimmer can swim faster due to the emergence of long wavelength longitudinal
waves. Indeed it thus is not surprising that longer type B swimmers are faster than shorter ones. Since animals
typically scale their speed with their size35, we determine the swimmer speed per size v̄/N as shown in fig. 5 (C,D).
Interestingly, we see that v̄/N has a maximum for N = 4 for type A and at N = 8 for type B. Hence these swimmers
need the smallest amount of time to swim their own body length NL0 in their respective swimmer category.

E. Towards drug delivery: Robust- and failure tolerant locomotion allows cargo transport without re-training

Since our evolved microswimmer policies show strong resilience even against significant morphological perturbations
(see section III C), we aim to investigate this operational plasticity even further: we systematically load the arms of
the most optimal (N = 13)-bead type A and B microswimmers with extra passive “cargo” beads of variable radius
Rc ∈ [0, 2R], and evaluate the dynamics of the corresponding loaded (N = 13 + 1)-bead microswimmer - without
retraining or further optimization; the choice of these particular swimmer instances is representative for other solutions
and morphologies of this contribution.

These cargo beads can geometrically be located between two neighboring beads of the microswimmer, but remain
functionally disjoint from the latter (cargo beads are not connected by arms to any body beads): when placed at an
arm li, a cargo bead does not disrupt the exchange of information between the corresponding beads i and (i+1) and
thus does not affect the inputs of the respective bead-specific ANNs. Furthermore, cargo beads do not propose active
forces independently, F a

c (tk) = 0, and are thus passive elements, pushed or dragged around by the hydrodynamic
interaction with all other beads in the system and the restoring forces of nearby beads. Due to the one-dimensional
geometry of our system and the harmonic restoring forces, once loaded between two beads of the microswimmer, the
cargo-beads are topologically fixed in the microswimmer’s body.

Figure 6 demonstrates, that our approach of utilizing decentralized, bead-specific controllers for N -bead microswim-
mer locomotion not only gives rise to highly robust self-propulsion policies (see above) but can also be used - out
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FIG. 6. (A) and (B): Mean COM velocity v̄ in % (color-coded) of the maximum velocity vmax (c.f., respective left columns)
of representatively chosen (N = 13)-bead type A and B microswimmer solutions, respectively, carrying a cargo bead of radius
Rc ∈ [0, 2R] (horizontal axis) at different loading sights, i.e., at the respective arms l1 through lN−1 (vertical axis). For each
panel, three selected trajectory plots (indicated by green frames in respective heatmaps) highlight the corresponding cargo-
swimmers’ single-bead- (red), COM- (black), and cargo bead trajectories (green) scaled by the body-size LB = (N−1)L0. Both
swimmers are capable - without any further optimization - of carrying different cargo loads efficiently. (C) and (D): Similar to
(A) and (B) but loading the respective (N = 13)-bead microswimmers with a total number of Nc = 1, . . . , (N − 1) cargo beads
(vertical axis) of the same size, Rc (horizontal axis), where each cargo occupies a single arm li starting from i = 1, . . . , Nc (c.f.,
green cargo lines in designated example trajectories). Again, and depending on Rc, both swimmers are capable of carrying a
large number of up to Nc = 7− 8 cargo beads (i.e., ≈ 50− 60% of their actual body-sizes with N = 13), before the locomotion
fails as the arms are (b)locked by the cargo (see top-most trajectories in (C) and D)). For the reference case, Rc = 0, we do
not include any cargo beads in the simulations, thus the corresponding velocity represents vmax for type A and B, respectively.

of the box - for cargo transport applications36–38: Both type A and B microswimmers are capable of transporting
large amounts of cargo beads efficiently. In general, the swimming speed of a loaded microswimmer decreases with
increasing cargo size, Rc. But as illustrated in Figure 6 (A) and (B), although showing an effect, neither type A nor
type B microswimmers are critically affected by the precise location of a single cargo bead (i.e., at which arm the
cargo bead is located), rendering the system highly robust against such geometrical defects.

Next, we successively fill all arms of a single microswimmer from the left, l1, to the right, lNc
, simultaneously with

a total number of Nc = 1, . . . , (N − 1) cargo beads of equal radius Rc (one cargo per arm) and measure the speed of
the correspondingly loaded (N +Nc)-bead microswimmers as a function of the number of loaded arms and cargo size.
Both type A and B microswimmers are capable of transporting multiple cargo loads at once efficiently: as illustrated
in Figure 6 (C) and (D) both type A and B microswimmers can carry up to ≈ 50 − 60% of their comprising active
beads N before the respective locomotion capabilities fail due to an increasing number of blocked arms.

Thus, our evolved navigation policies of the proposed microswimmer system not only show strong resilience against
partly significant morphological changes of the swimmer’s body (see also section III C), but even against functional
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failures of single or multiple actuators (c.f., blocked arms in fig. 6). Notably, since we did not explicitly optimize for
these qualities, the precise cargo transport behavior of different N -bead swimmer realizations may deviate. Anyhow,
the inherent robustness and increased structural and functional transferability of such biologically-inspired decentral-
ized decision-making systems13,33,39 renders our approach as a promising candidate to further bio-medically relevant
applications such as targeted drug-delivery systems40,41 in complex biological environments42,43.

IV. CONCLUSION

Our study has shown that machine-learning of decentralized decision-making strategies of the actuators in an in
silico microswimmers with neuroevolution techniques can lead to highly efficient system-level navigation policies of
the entire (virtual) organism that are, moreover, highly robust with respect to morphological changes or defects.

By treating each of the N beads of a generalized Najafi Golestanian (NG) microswimmer model as an Artificial
Neural Network (ANN)-based agent that perceives information about its adjacent beads and whose actions induce
contractions or extensions of its adjacent muscles, we have been able to optimize policies for the single-bead decision-
making centers which collectively facilitate highly efficient swimming gates on the system-level of the NG swimmer.
This has allowed us to identify locomotion strategies for increasingly large microswimmer bodies (ranging from N = 3
to N = 100) with efficiencies of up to η ≈ 1%, close to that of “real” biological microswimmers; to the best of our
knowledge, this is the first demonstration of successfully training an (N = 100)-bead microswimmer.

While having focused here on evolving the functional parameters of the decentralized controllers of the actuators
with the common goal of collectively self-propelling their host organism, we report that the final navigation policies
generalize well - i.e., without any further optimization - towards morphological changes (training and deployment at
vastly different numbers of beads N). This renders our approach robust and even modular from both a physiological
and information processing point of view24,33, going well beyond more traditional, in this sense much more brittle
reinforcement learning (RL) applications, typically based on centralized (system-level-) controllers.

Intriguingly, and as we demonstrate, the inherent robustness and modularity of the decentralized decision-making in
the evolved N -bead swimmer navigation policies makes our system directly suitable for cargo transport applications
without further optimization or fine-tuning. Reminiscent to the remarkable structural and functional plasticity of
“real” biological matter39,44, we emphasize the striking inherent ability of our microswimmer policies to adapt without
any retraining to perturbations or morphological changes on the fly (in “zero-shots”), thus framing our work in the
field of Artificial Life45. This resonates well with William James’ definition of intelligence of “achieving a fixed goal
with variable means”13,46.

The limiting computational factor in our simulations is not the controller part, but the O(N2) complexity of the
hydrodynamic model, which could be leveraged by further modelling, numerical optimization, or hardware accelera-
tors. However, the scalability of our approach allows us to analytically generalize the optimized policies as a function
of N , again overcoming limitations posed by traditional RL methods, and leveraging analytical investigations of the
generalized NG model to the thermodynamic limit.

Thus, our approach - at the intersection of biology, biophysics, artificial intelligence, and robotics - constitutes a
promising route toward developing highly robust and failure tolerant biologically inspired microswimmer policies (with
respect to morphological defects) at manageable computational costs. Moreover, the here proposed ANN controllers
and the learning paradigm are not limited to integrating information of three co-align spherical neighbors of an NG
microswimmer, but can be extended to arbitrary swimmer geometries and models. Despite potential computational
challenges, we thus aim to extend this approach to more realistic two- or three-dimensions microswimmer models in
future work.

Due to the inherent structural and functional plasticity of the evolved collective policies, our approach repre-
sents a promising framework for developing biologically inspired autonomous cargo transport36,42,43 or drug-delivery
systems37,38,40,41, especially when combined with autonomous chemotactic capabilities (which can be utilized analo-
gous to Ref. 16).

V. METHODS

A. Hydrodynamic interactions and numerical details for the N -bead swimmer model

The microswimmer consists of N hydrodynamically interacting beads located at positions xi(tk), i = 1, . . . , N ,
at time tk. The bead positions change over time by applying forces Fi(tk), consisting of active (F a

i (tk)) and pas-
sive (F r

i (tk)) contributions. The arm lengths are given by li(tk) = xi+1(tk) − xi(tk), i = 1, . . . , N − 1. At time
tk the velocities of the beads vi(tk) depend linearly on the applied forces through the mobility tensor M(tk):
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vi(tk) =
∑

j Mij(tk)Fj(tk). Self-mobilities are given by Stokes formula Mii = 1/(6πµR), while cross-mobilities
describe hydrodynamic interactions, which we consider in the far-field limit in the Oseen approximation: Mij(tk) =
1/(4πµ|xi(tk) − xj(tk)|. Active forces are applied as described in the main text. We apply passive spring forces as
pairwise harmonic restoring forces with spring constant k = 10F0/R to the beads if li < 0.7L0 or if li > 1.3L0 which
limits the arm extensions, as can be seen for example in the inset of fig. 3 (A,B). The equations of motion of the
microswimmer are then solved using a forth-order Runge Kutta scheme.

B. Artificial Neural Network-based Decentralized Controllers

Mimicking the flexible operations of biological neural circuits, Artificial Neural Networks (ANNs) consisting of inter-
connected Artificial Neurons (ANs) have become invaluable numerical tools for statistical learning applications47–50.
Each AN takes a set of inputs, x ∈ Rn, and maps them onto a single output value, y ∈ R, through a weighted non-linear
filter, y = σ(w · x+ b), where the weights w ∈ Rn represent the strengths of every individual input connection, and
b ∈ R is the bias, representing the AN’s firing threshold51. ANNs are commonly organized into layers of ANs. A Feed
Forward (FF) ANN transforms an input, x(1) ∈ RN0 , through a series of hidden layers (i = 1, . . . , NL) to an output
vector, y(out) ∈ RNL . Each layer’s output is calculated as y(i) = σ

(
W(i) · x(i) + b(i)

)
, where W(i) = {w(i)

jk } ∈ RNi×Ni−1

is the weight matrix and b(i) ∈ RNi is the bias vector. In a FF ANN, the output of layer i becomes the input to
the next deeper layer (i + 1) through successive dot-products, until an output is generated. Training an ANN thus
involves optimizing a set of parameters, θ = {w(i)

jk , b
(i)
k }, i.e., the entire network’s weights and biases, such that the

ANN’s response to known inputs have minimal deviation to (typically predefined) desired outputs52–55.
We here utilize a single ANN to approximate a decision-making policy for microswimmer locomotion in contrast

to our previous work16. The ANN is deployed to every bead of an N -bead microswimmer independently. Thus,
each ANN-augmented bead represents an agent that is immersed into a chain of N single-bead agents comprising
the body of an N -bead microswimmer (see fig. 1). As detailed in fig. 7, the bead specific agents of the microswim-
mer successively perceive the states of their respective neighboring beads and integrate this local information to
initiate swimming strokes locally, following a decentralized policy that self-propels the entire microswimmer in the
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based bead-specific decentralized decision-making implementing a system level policy that controls the locomotion of an N -
bead microswimmer. The detailing ANN architecture (inspired by33) emphasizes an ANN’s perception, piν , of bead i’s local
neighborhood, ν = −1, 0, 1 (see text), followed by an embedding, piν → εiν , and concatenation layer in the sensory module
that results in a bead-specific context matrix, Ci = (εi−1 , εi0 , εi+1), based on which the policy module proposes an action, ai,
comprising the proposed force, ϕi, and the cell-state update, ∆si. This step is performed by every bead independently at every
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hydrodynamic environment.
From the perspective of Reinforcement Learning55, our approach can thus be considered a trainable multi-agent

system that needs to utilize local communication and decision-making to achieve a target system-level outcome33.
The goal is to identify a set of ANN parameters θ for the localized agents that facilitates such collective behavior,
which we achieve here via evolutionary algorithms (EAs)33, see section V C.

Let us now specify the particular ANN architecture, and the perception (ANN input) and action (ANN output)
conventions that we utilize in this contribution (as illustrated in fig. 7).

First, we define the neighborhood of a particular bead i = 1, . . . , N : In our example of a one-dimensional, linear
N -bead swimmer, the direct neighbors of bead i are given by the beads i ± 1. To address each bead in this “i-
neighborhood”, we introduce the index notation iν = i+ ν with ν ∈ {−1, 0, 1}; i0 thus addresses bead i itself.

Second, we define the perception, or ANN input of bead i as Pi = {pi−1
,pi0 ,pi−1

}, a composite matrix containing
local, neighbor iν-specific perceptions, piν , of bead i: We define the neighbor-specific perception as piν = (liν , viν , si),
with bead iν-specific arm length to the neighboring beads liν = |xi − xiν | ∈ R, velocity viν ∈ R, and an internal,
vector-valued state si ∈ Rnca at time tk (see below); out-of-bound inputs for the head and tail beads are discarded by
formally setting p0 = pN+1 = 0 as we count i = 1, . . . , N .

The internal state of a bead is inspired by the cell state of a Cellular-56, or rather Neural Cellular Automaton57

(NCA) that can be utilized by each bead to memorize or exchange information with neighbors. Analogous to previous
work33, we define the update of a bead’s internal state between two successive time steps as si(tk+1) = (si(tk) +
∆si(tk) + ξ), where we introduced a zero-centered Gaussian noise term of STD ξ increasing the robustness of evolved
solutions33. Additionally, we clamp the elements of si(tk) to the interval [−1, 1] after each update.

Third, we here utilize a fixed ANN architecture and deploy it to every single-bead agent, as illustrated in fig. 7 (see
24,33,58): we partition a bead’s ANN into a sensory module, f (s)

θ (·), and a policy module, f (c)
θ (·). The sensory module

maps each neighbor-specific input separately into a respective sensor embedding, εiν (tk) = f
(s)
θ (piν (tk)) ∈ Rnembd , that

are merged into a bead-specific context matrix Ci(tk) =
(
εi−1(tk), εi0(tk), εi+1(tk)

)
. The subsequent policy module,

or controller ANN eventually outputs the beads’s action, ai(tk) = f
(c)
θ (Ci(tk)) = (ϕi,∆si), proposing a bead-specific

force ϕi ∈ [−F0, F0] (to-be regularized, ϕ → Fi, such that
∑

i Fi = 0, see section II) and an internal state update
∆si ∈ Rnca .

Forth, we specifically utilize a single-layer FF sensory module, f (s)
θ (·), with (N

(s)
0 = 2+nca) input and N

(s)
1 = nembd

output neurons with a tanh (·) filter (the same network for all 3 neighbors). The (3 × nembd) context matrix, Ci, is
then flattened into a (3nembd)-dimensional vector, which is processed by the policy module, f (c)

θ (·): again, a single
FF layer with N

(c)
0 = 3nembd and (N

(c)
1 = 1 + nca), followed by a clamping filter, σ(c)(·) = max(min(·,−1), 1).

Fifth, we use nca = 2 and nembd = 4 in our simulations due to numerical reasons, resulting in N
(s)
0 · (N (s)

1 +1) = 20

sensory module parameters, and N
(c)
0 × (N

(c)
1 + 1) = 39 policy module parameters (accounting for the bias vectors),

and thus in Nθ = 59 ANN parameters in total.

C. Genetic algorithm and neuroevolution of single-agent policies with collective goals

Genetic Algorithms (GAs)25–27 are heuristic optimization techniques inspired by the process of natural selection.
In GAs, a set (or a population), X = {θ1, . . . , θNP}, of sets of parameters (or individuals), θ1 ∈ RNθ , is maintained
and modified over successive iterations (or generations) to optimize an arbitrary objective function (or a fitness score),
f(θi) : RNθ → R33.

Many Genetic- or Evolutionary Algorithm (EA) implementations have been proposed28, which essentially follow the
same biologically-inspired principles: Starting from an initial, often random population, high-quality individuals are
selected (i) from the most recent generation for reproduction, depending on their associated fitness scores. Based on
these selected high-fitness “parent” individuals, new “offspring” individuals are sampled, e.g., by genetic recombination
(ii) of two mating parents, i, j, by randomly shuffling the elements (or genes) of their associated parameters, schemat-
ically expressed as θo = θi

⊕
θj . Such an offspring’s genome can be subjected to random mutations (iii), typically

implemented by adding zero-centered Gaussian noise with a particular standard deviation, ξ, to the corresponding
parameters, θo → θo+ξ. The offsprings then either replace (iv) existing individuals in the population or are discarded
depending on their corresponding fitness score, f(θo). In that way, the population is successively updated, and is thus
guided towards high-fitness regions in the parameter space, RNθ , over many generations of successive reproduction
cycles29,33.

Here, we utilize the “SimpleGA” implementation of D. Ha29 (following steps (i)-(iv) above) to optimize the ANN
parameters, θ, of the single-bead agents of the here investigated N -bead microswimmers, see sections II and V B
and figs. 1 and 7: After initializingthe ANN parameters of a population of size NP = 128 by sampling from of a
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zero-centered Gaussian of standard deviation ξ = 0.1, we successively (i) select at each generation the best 10% of
individuals for the reproduction cycle (ii, iii) - according to the fitness score described in section II - and (iv) replace
the remaining 90% of the population with sampled offsprings; we fix the mutation rate in step (iii) to ξ = 0.1 and
typically perform multiple independent GA runs for 200− 300 generations (see fig. 1) each to ensure convergence of
the evolved policies. For every parameter set θ (per run, and per generation), we evaluate the fitness score as the
average fitness of 10 independent episodes, each lasting for T = (400 − 800) environmental time-steps. For every
episode, we randomize the respective N -bead swimmer’s initial bead positions as xi(0) ≈ N (µ = i l0, σ = r) drawn
from a standard normal distribution centered around µ = i l0 with a standard deviation of σ = R, and evalute the
episode fitness as mean center of mass velocity v̄ (see section II).

D. Swimming-gate Analysis

In section III C, we define a 2π-period governing equation l̂i(t) = fℓ ((t− i τ̄) ω̄ + ϕ) for the actual arm lengths
li(tk) for both type A and B N -bead microswimmers as a function of the mean angular velocity ω̄ = ω̄(N) and the
mean neighbor arm cross-correlation time τ̄ = τ̄(N). For all evolved type A and B microswimmer policies utilized in
fig. 4 (A,B), we thus evaluate the corresponding mean angular velocity as ω̄ = 1

N−1

∑N−1
i=1 ωi, i.e., by averaging the

most dominant angular velocities ωi extracted for every arm length li(t) of a particular swimmer realization via Fourier
transformation. We further define τ̄ = 1

N−1

∑N−1
i=1 τi, with τi being the optimal time delay between neighboring arm

lengths li(t) and li+1(t+ τi) such that it maximizes their overlap, d
dτ

∫ T

0
li(t)li+1(t+ τ) dt|τ=τi = 0.
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