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Abstract: Multicellularity is one of the major evolutionary transitions, and its rise provided the ingredients for the

emergence of a biosphere inhabited by complex organisms. Over the last decades, the potential for bioengineering

multicellular systems has been instrumental in interrogating nature and exploring novel paths to regeneration and

disease, as well as cognition and behaviour. Here, we provide a list of open problems that encapsulate many of

the ongoing and future challenges in the field, and we suggest conceptual approaches that may facilitate progress.

Keywords: Synthetic Biology; multicellularity; collective computation; regeneration; self-organization; biobots

I. Introduction

Life forms in our biosphere fall into two categories: unicellular (UC) and multicellular (MC). UC
organisms act independently, dealing with their environments autonomously, while MC organisms
consist of various cell types with division of labor and cooperation [1,2]. UC complexity is energetically
favorable, involving simple replication and minimal life cycles. MC systems exhibit complex traits like
developmental programs, self-maintenance, and spatial patterns [3].

The study of MC has traditionally been helped by experimental and comparative methods,
theoretical models and the revolutionary tools provided by molecular phylogenetics [9–11]. These
studies have revealed unexpected insights concerning the tempo and mode of MC change and the role
played by dynamical patterning modules [12,13]. However, thinking at the organism level beyond
structural patterns, MC also includes other phenomena, such as movement or cognition, both relevant
to our understanding of MC evolution. This paper considers the potential insights provided by synthetic
alternatives based on diverse approaches to build cellular assemblies, from microbial consortia on
a Petri Dish or cell clusters to organoids and living bots. Some examples are displayed in Figure 1,
with three examples from biology (first column) and several synthetic MC case studies with different
levels of complexity. The first two rows are related to hierarchical and emergent mechanisms of
pattern generation [14]. These correspond to top-down (predictable) versus bottom-up (emergent)
mechanisms, respectively, and both are relevant for our understanding (and engineering) of MC
systems. Programmable MC synthetic systems shown in Figure 1(b–d) include gradient-forming
microbial consortia, multistable cell fates. On the other hand, many crucial developmental processes
shaping embryos (Figure 1e) include emergent phenomena captured by some synthetic MC systems,
including organoids, branching bacterial populations and Anthrobots (Figure 1f-h). Finally, the third
row showcases the use of evolutionary strategies in the design of MC assemblies. The challenge here is
to generate simple synthetic organisms, such as Placozoans (Figure 1i). Successful evolution in vitro
of simple multicellular systems [7,15] has been achieved (Figure 1 j, k) while in silico evolutionary
algorithms have been used to design reconfigurable organisms [16,17].
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Figure 1. Natural and synthetic multicellularity. These case studies include three natural examples
(left column) of patterns and processes associated with hierarchical and emergent mechanisms and
evolutionary dynamics. A classic example of a top-down mechanism in morphogenesis is the formation
of gradients and stripes in Drosophila (a). These processes can be approached by (b) a synthetic band-
pass filter using engineered E coli (after [4]), (b) the generation of multiple coexisting cell fates [5] and (d)
programmable symmetry breaking-induced structure formation (from [6]). Morphogenetic processes
are spatially organized through multiscale feedback loops shaping embryos (e; image courtesy of James
Sharpe). Synthetic counterparts of the underlying emergent phenomena include (f) kidney organoid
development, (g) Turing-like branching morphogenesis of bacteria (g) and (h) the development of
Anthrobots. The simplest, aneural metazoans are exemplified by Placozoans (image by Sebastian R.
Najle, CRG) (i), while evolved cell assemblies emerge under synthetic selection mechanisms, including
cell-cell adhesion to escape from predators (j; adapted from [7]), yeast MC aggregates (k; adapted
from [8]) and Xenobots (l). The latter were obtained through a combination of in silico evolutionary
algorithms and bioengineering.

Multicellular complexity is a tale of multiple scales, and understanding its origins, universal
properties and contingencies inevitably call for an interdisciplinary picture where theory has played
a crucial role. As pointed out by the late Brian Goodwin [18] the traditional, reductionist approach
to the problem led to an inadequate view of the nature of organisms. Additionally, the presence of
feedback loops connecting different levels (such as genes, gene networks and cell-cell interactions) are
deeply constrained by the laws governing pattern formation [19,20]. This includes symmetry breaking
[21], the structure of attractor landscapes [22,23] or collective properties [24,25]. Synthetic alternatives
[26] provide a unique opportunity of dissecting MC complexity [27,28]. Importantly, they allow the
study of emergent form and function without an explicit evolutionary history [17]. Unlike traditional
biological model systems, sculpted by aeons of selection, synthetic organisms allow us to observe
the plasticity of life’s agential materials as they solve new problems [29,30]. Adaptive structure and
behaviour arise in real-time in novel configurations not previously tested by evolution.

The early days of synthetic biology were largely dominated by modifying microorganisms, which
have become the perfect chassis to build complex cellular circuits capable of sensing and reacting
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to their environments in complex ways. On the other hand, stem cell technology and new cell
culture methods have made it possible to reach new complexity levels associated with tissue or even
organs [31,32]. Because of their relevance in bioengineering and potential biomedical impact, organoids
have emerged as a unique opportunity for the study of diseases and as a complement to animal models.
Finally, engineering behaviour, motion and even self-repair in embodied, motile living systems have
provided unexpected insights [33,34].

In most case studies, the complexity of synthetic living agents is achieved through a combination of
design and self-organization. Far from standard engineering, synthetic MC exploits intrinsic properties
of living matter and offers opportunities for predictable design based on computational modelling and
evolution in silico. Sometimes, the design principles depart from both natural and human-designed
solutions. The current landscape of synthetic MC systems can be roughly decomposed into three
(partially overlapping) classes:

1. Synthetic multicellular circuits. This class involves cellular circuits that have been modified
or introduced through genetic engineering within living cells, typically used as a chassis [35–
39]. Many designs within this domain rely on a modular approach to circuit complexity based
on standard combinatorial circuit design [40–42]. Cellular consortia have been used as MC
implementations of all kinds of simple responses, from combining Boolean gates [43–46] to
pattern formation [4,47]. These designs involve strains interacting through chemical signals
propagating in a liquid medium or diffusing over short distances on an agar plate.

2. Programmable synthetic assemblies. The next step towards engineering MC systems exploits
the predictable properties displayed by adhesion-driven spatial morphodynamics. Again, this
bottom-up engineering allows predicting (i. e. programming) the outcome of the final spatial
structure. It was early understood that cell sorting due to different adhesion energies could
easily explain the self-organized aggregation of a set of randomly mixed cells [48,49]. Despite
the self-organized nature of the process, it is possible to make some predictions concerning the
spatial arrangements at steady state.

3. Synthetic morphology and agential materials. One way of moving beyond cell-level engineering
involves considering cell collectives as agential materials. These systems exhibit emergent proper-
ties at the system level that cannot be understood in terms of the properties of the constituents
(genes and cells). This approach takes advantage of higher-order properties of embodied living
matter (such as memory, context-sensitive navigation of problem spaces and homeostasis) to
perform computations and design morphologies beyond the bottom-up principles of synthetic
biology [29,50]. This class includes organoids and biobots and other MC assemblies capable of
collective responses in space and time and novel forms of behaviour.

II. Synthetic Multicellular Classes

The three domains listed above have contributed to a new wave of exploring biological complexity
and interrogating the principles of living systems. They have also provided a great source for novel
biomedical research and applications. While some constraints need to be addressed (such as the limits
to organoid size), some engineered constructs have revealed unique properties that question some
old assumptions concerning the nature of computation or agency. The next section summarises each
class’s key features before defining our challenges and open questions.

A. Synthetic Multicellular Circuits

While standard engineering design has exploited inert matter, bioengineering constructs are made
of molecular and cellular substrates tied to living structures (or their components). What is different? If
we compare with physical systems, physicist John Hopfield argued that what makes biology different
is its potential to perform computations [54]. More precisely, biological agents that navigate their
environments searching for resources (and thus involving purpose) “compute” incoming information
(internal and external) and respond to it in adaptive ways. The first (but incomplete) layer to approach
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this problem from synthetic biology involves building logic circuits, including a whole array of logic
gates, oscillators, band-pass filters, sensing-reacting networks and even sophisticated circuits capable
of making decisions, such as targeting and killing cancer cells [55–59]. Complex dynamical states
(such as critical states) have also been engineered [60]. Some of these examples, associated with UC
implementations, are depicted on the left lower wall in Figure 2a., where a space of synthetic biology
designs has been depicted. One axis introduces the main target of most designs: computational
complexity, which describes the diversity of computational tasks performed by each circuit design.
A second axis weights the relative role played by interactions between different engineered strains.
Moving up, MC designs are represented by swarms [61], learning consortia [52], or MC computation
[62]. Some examples, such as synthetic swarms, still need to be implemented. In all these examples,
cell populations live in a well-mixed medium.

As the field advanced, a limitation in engineered design predictability became evident. Circuit
design complexity in cells often causes cross-talk: a transcription factor linking genes disrupts other
processes. This “wiring problem” arises from the evolved nature of cellular circuits, differing from
standard designs due to natural selection and reuse of parts [63]. This is particularly relevant when
comparing computers and living systems regarding hardware and software separation. In living
systems, modularity and integration are intertwined. Experiments in evolutionary computation
highlight this difference [64]: in silico evolved circuits perform better and are more reliable than
human-made ones, though harder to understand.

To address this, a standard approach isolates circuit modules within cellular circuitry, and modu-
larisation has become a design principle [65]. However, a different MC design allows a combinatorial
approach, differing from traditional engineering [44,53]. We will use this approach to illustrate the
potential for non-standard solutions within bioengineered agents. This uses distributed computation
logic, creating a cell library with minimal engineering and no connections, producing an OR logic
output [53]. Figure 2b–c illustrates this with a three-input, one-output multiplexer. While the UC
design (b) requires several wires to connect the different genes, an MC alternative (c) shows that very
simple, reusable constructs can be engineered within two cells, both including a GFP reporter gene
and not connected to each other. If one of the reporters is expressed, we take the system’s response as
one (“ON”), whereas if none does, the output is zero (“OFF”).

We have skipped the third axis of our space in Figure 2a. It is labelled as “agency” and reconnects
us with Hopfield’s conjecture about the nature of living systems. Within the context of cells, agency
refers to their ability to sense, respond to, and adapt to their environment through autonomous
processes [66,67]. They expend effort to attain specific preferred states, using different degrees of
problem-solving competency, learning, and active inference to resist perturbations and autonomously
project their actions into new problem spaces. Living systems display agency, and we situate synthetic
UC designs on the left wall since the individual agency is not modified by adding an extra genetic
construct. Instead, complex circuits generated by means of cellular consortia (grey area) lack this
property due to their disconnected nature and their special implementation, which requires all cellular
components to perform the computation but not the interaction as a system with their environments.
To incorporate this feature within synthetic MC systems, we must expand the reach of standard
biocomputation designs. In this context, a pluralist stance, known as polycomputation [34], suggests
that living organisms harness various forms of information processing across different scales and
contexts to control their development, behaviour, and adaptation. As discussed in the next sections, the
embodied nature of MC complexity facilitates such multiscale processing, sometimes in unexpected
directions.
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Figure 2. Synthetic cellular computation. Engineering cells at the gene level have provided a broad
range of simple computational circuits, including both unicellular (UC) and multicellular (MC) designs.
In (a), a biocomputation space involving implementations based on consortia is shown. Here, the
locations are relative to each other. We use three axes in this space: agency, computational complexity
and the diversity of network interactions among cells. The bottom left of this cube includes several
implementations that use a unicellular chassis, whereas MC consortia are found close to the right
wall (grey area). Some designs, such as flip-flop memory devices [51] or learning systems [52], are
obtained using a microbial consortium. However, computational designs can depart from nature and
engineering, as shown by synthetic Distributed Computation models [44,46,53]. An illustration is
provided in (b-c). In (b), a single-cell implementation of a multiplexer circuit (MUX), along with the
truth table (left) and the corresponding combinatorial circuit (right). A simpler two-cell MUX is shown
in (c) and involves much simpler circuits and reusable parts; notice that the two cells are not connected.

B. Programmable Synthetic Assemblies

Developing complex multicellular agents requires two important features: (1) a mechanism to
generate cellular diversity and (2) a predictable spatial organization that allows coherent system-level
responses. Increasing cell types displays an evolutionary trend: with the rise of animals, the number of
different cellular phenotypes has increased [68,69]. The current understanding of generating different
cell states is grounded on the concept of attractors [70,71]. By using simple models of gene-gene
interactions, it is possible to show that different stable expression states are accessible from different
initial conditions. Small two-gene cross-inhibitory networks have achieved this [72], and synthetic
implementations exist [73]. But only recently has it been possible to design a circuit capable of
displaying many different states ([5] see Box 1).
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BOX 1: Synthetic scalable design of cell fates

Natural MC development relies on multiple cellular states expressed by the same genotype. Mathe-
matically, these states correspond to different attractors (stable equilibria) of the dynamical system
describing the behaviour of relevant genes. These attractors coexist for specific parameter values,
making the system multistable. This is similar to the content-addressable memory in Hopfield
networks, where attractors represent distinct information patterns the neural network converges to
based on its initial state [74]. This associative memory is analogous to the differentiation trajectories
in MC systems during development. A common circuit module leading to bistable cellular fates is
the mutual inhibition circuit, where two proteins inhibit each other’s expression:

dA
dt

= αa +
βa

1 + Bn − δa A,
dB
dt

= αb +
βb

1 + An − δbB (1)

Here, A and B are the concentrations of the main regulators of the two cellular states (usually
transcription factors, TFs), normalized to their repression thresholds. The first two terms represent
basal and regulated gene expression, while the third term is linear protein decay. This model exhibits
two coexisting equilibria, where one transcription factor is practically absent (if α ≪ β), determining
the associated cell fate [75].

The number of cell fates in the mutual inhibition circuit described above scales linearly with the
number of cellular components, as each new transcription factor adds only one extra state where only
that factor is present. Supra-linear scalability requires multiple transcription factors, complex DNA
promoter regions and intricate regulatory architecture. A simpler solution is using dimerization
among circuit proteins for mutual inhibition [5]. In this case, heterodimers sequester monomers,
which activate gene expression as homodimers:

dAi
dt

= αi +
βi A2n

i
1 + A2n

i
− δi A − γ

N

∑
j=1

Ai Aj (2)

This model shows scalability, with interaction terms included in the last term. Stability analysis and
experiments with zinc-finger TFs and unique dimerization domains demonstrate that mixed fixed
points with multiple TFs can be stable in large parameter spaces [5].

How can we build MC systems with a spatial organization that can be predicted from the basic
units (genes, molecules and cells) and their interactions? Getting closer to organs, organisms, and
embryos implies introducing several extra layers of complexity, and the mapping between these
components and the system-level properties is known to be highly nonlinear (Box 2). In other words,
the nonlinear dynamics connecting gene network states with the unfolding of cell-cell interactions is
far from trivial. This is particularly true with growing systems, where even the boundary conditions
change through development. However, there is a domain of predictability given by engineering
strategies that exploit some hierarchical cell-cell interactions. The best candidate, which has a long
tradition within embryology and theoretical biology, is based on combining adhesion molecules.

Adhesion dynamic and the associated cell displacements occur via energy minimisation [48,76].
A model can be easily defined by a cell population on a discrete lattice. Cell states (cell types or
engineered strains) are indicated as σn ∈ {0, 1, 2, ...} and cells can move to neighbouring sites. To
illustrate how the model works, consider a three-state example: two cell types plus empty space, to be
indicated as σ1,σ2 and σ0, respectively.

Different cells have different adhesion strengths. These are defined by means of an adhesion matrix W :

W =

 ω(σ0, σ0) ω(σ0, σ1) ω(σ0, σ2)

ω(σ1, σ0) ω(σ1, σ1) ω(σ1, σ2)

ω(σ2, σ0) ω(σ2, σ1) ω(σ2, σ2)

. (3)
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As defined, we have: ω(a, b) = ω(b, a), and ω(σ0, σ0) = 0. An energy function H that is defined for
each lattice site µ i. e. :

Hµ = ∑
ση∈Γµ

ω(σµ, ση) (4)

where Γµ is the set defined by the nearest neighbours of a cell in position µ each of which occupies a
position η, and has a defined state ση. If we try to swap one cell to one of its nearest locations, we first
determine the new energy H′ using the same expression. The energy difference between the original
and the chosen location is ∆H = H′ −H∗. The probability associated to this is given by the so-called
Boltzmann rule:

P(σµ → ση) =
1

1 + e∆H/T (5)

where the parameter T is a noise factor tuning the degree of randomness associated to our model. The
Boltzmann factor e∆H/T acts in such a way that if ∆H = 0, the probability of swapping is 1/2. For small T,
the probability of swapping rapidly increases when ∆H > 0, whereas is very small when ∆H < 0. The
relative weights of the matrix elements induce a hierarchy that allows to predict the kinds of patterns that
can result from a given engineering design associated to adhesion properties (see [77] for details).

This simple microscopic set of rules provides the causal framework that explains re-aggregation
experiments, as shown in the sequence of Figure 3a-c) displaying a set of dissociated cells (two types
of retinal cells) evolves to a segregated structure [78]. Following these basic principles, orthogonal
cell adhesion toolboxes have been designed to exploit the weight hierarchy, leading to synthetic
programmable morphologies [79,80]. Furthermore, using a stochastic recombinase genetic switch
allows programmable symmetry breaking and commitment to downstream cell fates [6]. This synthetic
induction of SB could be an important step towards inducing differentiation in organoids.

Figure 3. A space for synthetic embodied MC.. Spatial self-organization rules associated with cell-cell
nonlinear interactions are responsible for SO phenomena such as re-aggregation of tissues (a-c) due
to differential adhesion (image adapted from [78]). This SO rule is part of the processes shaping MC
embodied complexity, captured in (d) using a 3D space for natural (dark spheres) and engineered
or artificially evolved multicellular systems (light spheres). Each system is located in terms of its
relative positions, not in quantitative terms. Here, the three axes include (a) spatial complexity (how
different cells are distributed over space), (b) developmental complexity (the relative relevance of self-
organization and hierarchy participates in the building of the agent) and (c) computational complexity
axis. The latter aims to capture the complexity of the computational decision-making actions displayed
by each system. The current synthetic MC designs occupy the left corner, where synthetic circuits (dark
grey) and embodied systems (light grey) are highlighted. A large void on the right reminds us of the
large gap between current achievements and the natural counterparts of MC complexity.

The predictable nature of these designs faces challenges when dealing with the reality of more
complex cellular aggregates and developmental processes. Along with symmetry breaking, population
growth and the role played by physical forces beyond differential adhesion need to be considered, as
well as intrinsic properties of cells and tissues as agential materials [29].
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BOX 2: Multicellularity, irreducible complexity and the genotype-phenotype mapping

The absence of a simple theory for the evolution of biological complexity is tied to the nonlinear nature
of the genotype-phenotype mapping. Such mapping is mediated by several networks associated
with different levels of organismal complexity. To illustrate this concept, let us start with a (single
cell) gene network, where the expression level of a set of genes, {xi}, i = 1, ..., n, can be described by:

dxi
dt

=
n

∑
j=1

ωij
x2

j

1 + x2
j
− δixi (6)

where ωij ∈ W defines the interaction matrix and δj the decay (degradation) rates. Gene networks
display emergent patterns in the architecture of the underlying attractors X∗

k = (x∗1 , ..., x∗n)k, obtained
from the condition dxi/dt = 0. The properties of the attractor landscape emerge from the nature of
bifurcations associated with the nonlinear dynamical equations and are, in particular, dependent
on the density of connections [70]. Spatial patterns can be generated by expanding the previous
dynamics over a MC system. A discrete version of a tissue is defined by the new set:

∂xµ
i

∂t
=

n

∑
j=1

ωij
(xµ

j )
2

1 + (xµ
j )

2
+ Di

[
∑

α∈Γi

xα
i − qix

µ
i

]
− δixi (7)

where the terms on the right-hand side are associated with gene-gene interaction (as defined in the
previous equation), passive diffusion between concentrations in the µ-the cell and its qi nearest cell
neighbours (with a rate Di, with Γi indicating the set of nearest cells) and decay terms, respectively [81–
83]. Introducing spatial degrees of freedom expands the possibilities of phenotypic complexity due to
the reaction-diffusion couplings. Space allows further emergent patterns relevant to morphogenesis,
from spatial gradients and oscillation-driven somitogenesis to symmetry-breaking instabilities [21,84,
85] and noise-induced phenomena [86]. How is the landscape of spatial patterns Φ (our phenotypes)
connected to the space W of gene wiring networks? This mapping can be expressed as a function Ω

Ω : W −→ Φ (8)

and has been systematically studied for some special pattern-forming models [87,88]. An example of
the implications of the GPM nonlinearity is given by connectivity thresholds: once a critical value
is reached, all possible spatial patterns are accessible [89]. The nonlinearity of this mapping goes
far beyond gene regulatory network (GRN) wiring diagrams when growth and pattern formation
occur together. These morphodynamic processes add additional layers of nonlinearity to the GPM [14].
The upper layers of this organismal complexity hierarchy deal with behaviour and cognition. For
neural agents, this means another network, where variables are neuron activity and threshold-like
propagation dynamics, along with learning and memory. Classic formulations of these networks
follow sets of nonlinear coupled equations:

dxi
dt

= ρxi tanh(xi) + g
n

∑
j=1

Jij tanh(xj)− ηixi (9)

In this picture (which is a simplified one), the matrix of couplings Jij, which would be affected by
genetics, development and the interaction with the environment. However, even without neurons,
learning and memory are possible in physical networks [90,91], and in cells and tissues as living
materials [29]. Finally, to address agency, embodied interactions among different networks need
to be considered [92]. In summary, the GPM is a multilayer network structure [93] that connects
organismal complexity across scales, each one involving emergent properties, each one irreducible to
the properties of the lower layers.
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C. Synthetic Morphology and Agential Materials

The predictable nature of the previous examples becomes less reliable as we move towards
complex MC systems, from organs to full organisms. The lack of predictability is due to the nonlinear
nature of the genotype-phenotype mapping (see Box 2). In a formal fashion, it is a mapping Ω between
the space of genotypes G and the space of (possible) phenotypes Φ:

Ω : G −→ Φ (10)

In a nutshell, while the nature of adhesion rules allows programmable designs, living agents are the
result of developmental programs that require growth and self-organisation, as well as regeneration,
reproduction and behaviour. The information at the level of genes and gene-gene interactions will
typically be incomplete in explaining the next complexity layers because the phenotype is not only the
result of open-loop emergent complexity, but of directed navigation of anatomical morphospace guided
by perception-action loops and setpoints encoded in bioelectrical, biochemical, and biomechanical
properties. One crucial but traditionally ignored aspect is the presence of agency, i.e., the capacity for
goal-directed changes to one’s self and the environment [94]. Agency itself is not only a general feature
of life but also a multiscale property, because living organisms are composed of numerous layers of
overlapping cooperating and competing agents which distort the option landscape for their parts and
provide abstraction layers of competent subroutines for the systems they in turn comprise [30]. Two
synthetic counterparts to these MC agents are discussed here: organoids and living robots.

One successful implementation of embodied MC systems is provided by organoids, representing
the last part of a timeline starting from re-aggregation experiments [95,96]. In a nutshell, organoids
are in vitro tissue-engineered cell models that can behave as miniature versions of the full-fledged
organs they represent. Along with the self-organised component of their development [97], we need
to use adult stem cells or pluripotent stem cells. The latter, in particular, have been exploited to
generate different organoids, bringing the right conditions for a given set of cell types to emerge and
get together. Afterwards, cell-cell interactions, both in signalling and mechanic forces, take control of
morphodynamics.

Stem cell engineering has been used to study gene circuits and physical cues in morphogenesis.
One particularly groundbreaking work was the self-organized emergence of optic cup organoids, later
followed by brain organoids with regional identities using soluble compounds [97]. In all these cases,
one major challenge is reproducibility and making organoids scalable and closer to their organs of
reference, as well as the generation of vascular or neural networks for realistic contexts. It is worth
noting that improvements in the field have benefited from the emulation of native tissue properties
like stiffness and geometry. Similar results in whole embryo models, known as gastruloids, reveal
symmetry-breaking mechanisms and axis formation in models of early embryogenesis [98,99].

The previous case studies lack two important components of MC complexity. One is the order for
free resulting from intrinsic system properties, which allow the material to exploit its nested multiscale
competency. Secondly, two innovations were required for the rise of cognitive complexity in metazoans:
movement and sight [100]. Movement is likely to be a precondition for the rise of cognitive agents
[101,102]. Along with sensors, it allows the existence of behavioural patterns. Can these nontrivial
features be implemented in engineered MC agents? Are the synthetic designs necessarily grounded in
engineered gene networks or signalling circuits?

Biology features problem-solving at each level of organisation—a kind of agential material with
agendas, homeostatic loops, and the ability to maximize or minimize specific goal states with various
degrees of robustness despite novel circumstances. This is well-known in neuroscience, where the
CNS provides a learning interface that allows simple stimuli, such as reward and punishment, to drive
complex internal rearrangements that the trainer could not achieve via micromanaging the molecular
details. Numerous examples of learning [103], problem-solving, and optimization in biological systems
such as molecular networks, cells, and tissues represent highly tractable targets for engineering top-
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down. The previously discussed examples cannot incorporate many aspects of agency that we can
find in the living world. The gap in the space of Figure 2a is a reminder that designed computational
circuits and programmable spheroids impose some restrictions to the behavioural repertoire of these
constructs. There is a twilight zone that requires extra features capable of exploiting the intrinsic
agential properties of cells and tissues.

A novel approach to the previous questions that provides one way to explore the voids in these
spaces is provided by Xenobots [16] and Anthrobots [104], which show that endogenous functional
capacities can be reached with no genetic editing or synthetic circuits. Xenobots are constructed from
the skin and heart cells of the African clawed frog (Xenopus laevis). These choices allow them to
move in predictable ways, pushing objects and working in collective ways (although their learning
capacity and ability to achieve specific ends is only beginning to be investigated). Moreover, because
of the chosen cells, they have self-repair properties. Importantly, they were designed using an
evolutionary optimization algorithm that explored the space of soft physical shapes that could crawl
in (a virtual) space. The optimal shapes were then sculpted in living tissue using microsurgery [16,17].
Anthrobots, on the other hand, are self-constructed spheroidal living bots obtained out of human
lung cells that allow cilia-driven propulsion. By contrast to Xenobots, they require no evolutionary
algorithms, manual sculpting, or embryonic tissues. In both cases, instead of implementing desired
functionality explicitly with transcriptional circuits, these living robots featured no genetic editing
or synthetic circuits. Their capabilities, such as kinematic self-replication, repair of neural wounds,
etc., are endogenous and novel functions that can be controlled by behaviour-shaping, not bottom-up
engineering.

Regenerating and developing systems offer numerous examples of biological systems navigating
the anatomical morphospace to solve novel problems. This capacity is a highly tractable set of built-in
software modules accessible to the bioengineer, in addition to the specific pathways and molecules
that are usually targeted. More recently, it has been claimed that living tissue can be understood (and
efficiently controlled) as an agential material—a substrate with its own competencies and agendas in
transcriptional, anatomical and physiological problem spaces that can be manipulated using the tools
of behavior science, not only biochemistry [105]. Indeed, work to understand the policies by which
the homeodynamic set points scale, from the humble metabolic goals of single cells to the dynamic
maintenance of grandiose construction projects such as regenerating limbs, has led to new approaches
to combat the failure of this scaling, in the form of cancer [106,107].

The three classes of synthetic MC systems reveal a very wide space of possibilities for further
exploration. On one hand, the combinatorial nature of genetic circuits and programmable adhesion
hierarchies provides a potential source of logic functionalities that can be combined with other features,
particularly embodied architectures. On the other hand, the realization that key aspects of agency
can be available for free, both in living tissues and in engineered biobots, reveals some unexpected
properties of living matter that could be exploited to understand evolutionary constraints to the
evolution of MC forms [18,19,108] while pushing the boundaries of the possible. In the next section,
we propose several open problems regarding this potential for synthetic multicellularity.

III. Open Problems

Synthetic developmental programs: the possible and the actual. The suggestion that there is a
universal toolkit defining a finite set of dynamical patterning modules [13] could be studied within the
synthetic MC framework. The programmable design of MC aggregates using adhesion molecules and
symmetry-breaking mechanisms [6] would be one example within this validation of the theory. The
advantages provided by scalable generation of cell types [5] and that can recapitulate the Waddington
landscape concept [109], combined with using other developmental modules (introducing polarity or
dynamic oscillations), could lead to a taxonomy of possible embodied designs.

Embodied memory and learning. Current synthetic designs dealing with memory circuits rely
on the standard approach of electronic switches. Synthetic flip-flops have been implemented using
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MC consortia [51], and theoretical models have shown how learning could be implemented using MC
consortia [52]. Can we move beyond these standard metaphors? It has been shown that learning in
living systems can occur without a neural substrate [103] and that GRNs and pathways can learn with
no genetic changes needed [110,111]. Moreover, memory can also be mediated by electrical, rather than
biochemical, signals, as shown recently in bacterial biofilms [112]. Learning can also be implemented
at the global regulatory network level to interpret the nonlinear high-dimensional projection of time-
dependent external signals by intracellular recurrent networks of genes and proteins [113,114]. New
MC constructs using organoids or biobots could benefit from memory enhancements grounded in
these novel views.

Synthetic collective intelligence. One dominant form of intelligent behaviour that rules the
biosphere outside standard brains is based on collective intelligence (CI). In general terms, it refers to
the enhanced capacity that emerges from the collective interactions among agents in a group, resulting
in solutions that cannot be explained in terms of single individual actions. The standard example is
provided by insect societies [115–118]. It has been conjectured that the conceptual basis for CI can
be translated into synthetic CI counterparts [61]. Moreover, electrical transmission of information in
biofilms has shown the unexpected potential [119,120] that reminds us of some general principles
of neuronal tissue dynamics [121]. In recent years, collective intelligence has been recognized as a
general principle in agential MC systems beyond animal societies [25]. Moreover, it has been pointed
out that multicellular organisms and social insect colonies share fundamental common organizing
principles [122]. Could we use synthetic MC designs to explore this connection? Can we exploit general
principles of information sharing and processing in MC agents to build novel forms of embodied CI?

Synthetic neural cognition. Recent advances in microfabrication are allowing the development
of precision neuroengineering methods through which neurons in in vitro cultures can be connected to
one another in pre-designed ways [123]. These advances are revealing, for instance, the importance
of modularity in the emerging activity of neural networks [124], and pave the way for the design of
prescribed collective activity in neuronal assemblies. Can they inspire the development of augmented
embodied agents to expand the cognitive potential of spheroids, organoids or Xenobots? One obvious
possibility is to follow the path of standard synthetic circuit design on a new scale: instead of using
single cells as a chassis for engineered circuits, use whole cell assemblies as the chassis for engineered
cell types carrying computational circuits.

Synthetic proto-organisms and life cycles. One challenge for synthetic MC designs is the design
and development of complex assemblies that can be considered simple forms of organisms, developing
from single cells in predictable ways and able to self-replicate themselves. A minimal synthetic design
should include the growth of a whole assembly from a single cell and the potential for some cells
in the assembly to leave it by detaching from other cells, which should then be able to repeat the
growth process. Anthrobots already possess some key components for such a goal: they develop
in a predictable way from single stem cells, complete their developmental path into a multicellular
spheroid (with variable size), display phenotypic traits (also associated with a variable shape), and
display simple behavioural patterns including the ability to heal neural wounds. Xenobots, on the
other hand, can display a remarkable (and once again, unexpected) property of organismality: self-
reproduction [125]. However, this is a completely novel path based on kinematic self-replication: the
Xenobot autonomously constructs copies of itself using available materials in its environment. Is this
an indication that there are multiple paths to build autonomous organisms and their life cycles?

Building new organs. The organ level of organization is a missing component of current theories
of organismality. Although they are identified as discrete modules within animal bodies1, we do not
have a systems-level theory that provides predictable insights concerning their expected agency, num-

1 Plants follow a very different organization plant and developmental trajectories, with no fixed numbers of organs, such as
leaves, that are highly redundant parts.
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ber, nature and embedding within systems [77,126]. One possible path towards a better understanding
of these mesoscale structures would be the synthesis of novel organs. A proof of concept would require
building a stable, self-maintaining structure within a model organism and being able to perform a
given functionality. Some inspiration in this context can come from the developmental processes
leading to nest construction in social insects [127–129], where selforganization, broken symmetries
and specialised parts emerge (and are maintained and regenerated) out of swarm intelligence.

Multiscale synthetic holobionts. Current and future synthetic biology applications in the biomed-
ical context often involve single UC agents as potential carriers. One major field of research involves
the study of synthetic microbes used to repair dysbiotic microbiomes [130,131] or even terraforming
extant ecosystems [132,133]. In all these cases, we deal with the holobiont: an organism that contains
other organisms, defining an ecological unit [134]. However, ongoing research reveals that we might
need to expand this towards how MC agents can also interact with a context defined by tissues,
organs or another organism. This includes the repair behaviour displayed by Anthrobots [104] and
the swimming microrobots made out of algae and coated with nanoparticles, used to deliver drugs
directly to metastatic lung tumours [135]. Could MC agents persistently coexist (maintaining their
individuality) with tissues and organs within organisms, defining a new class of synthetic holobionts?

Synthetic behaviour. Work in minimal animals such as C. elegans has shown that sophisticated
experience-dependent behaviour, such as salt attraction or repulsion depending on previous cultivation
conditions [136,137], is encoded by small protein circuits in a single synapse [138]. This multiscale
simplicity level encourages designing similarly complex behaviours in synthetic minimal animals.
Moreover, the study of basal cognition opens new avenues to define behaviour [139]. Robots have
been extensively used to study the evolution of adaptive behaviour [140,141] An interesting avenue
could be to use Xenobots to study fossil behaviour [142] as represented by the tracks or burrows of
ancient animals, which has been studied using robot models [143]. Could living robots with different
levels of behavioural complexity recapitulate the taxonomy of fossil traces and help understand their
origins?

Predictable designs? A generic problem, namely, to what extent the predictability of the MC
designs is feasible, remains to be addressed [144,145]. Most synthetic systems, from UC to MC,
are built to live under in vitro conditions, and those used to target tissues or organs are used as a
chassis for an isolated design that is largely disconnected from the rest of the cellular circuitry. The
dream of understanding biological complexity under a top-down view, in ways close to standard
engineering [146] might be limited by the non-standard, tangled nature of cellular circuits and the
presence of emergent phenomena. Although emergence is on our side in many ways [27], shaping
organoids and allowing behaviour out of form, we lack a general picture of the limits of what can
be predicted. The voids within the spaces shown in Figures 2 and 3 are a reminder of the difficulties
associated with building MC complexity from scratch without the natural developmental context.
Perhaps we must accept that we cannot engineer the way we did so far with passive materials,
micromanaging everything from the bottom up. We need to collaborate with the materials and take
advantage of their basal cognition.

IV. Discussion

What determines the intrinsic complexity of organisms and developmental paths? Morphological
complexity results from a highly non-linear mapping between genotype and phenotype [147]. In this
context, self-organization processes beyond the gene level must be considered when dealing with tissue,
organ and organismal complexity. A universal outcome of SO is the presence of emergent properties,
i.e., qualitative properties exhibited by a system that results from interactions between units but that
cannot be reduced to the properties of those units. Recent theoretical and experimental studies have
shown that inspiration from the physics of phase transitions might help to deal with these emergent
properties and their universal patterns [148–150]. The growing ambitions of bioengineering towards
creating artificial macroscopic systems face dealing with emergent patterns, emergent (primitive)
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cognition and their scalability. All in all, we have a real world where our goal of designing increasingly
complex cell assemblies is challenged by the underlying nonlinearities that connect genotypes and
phenotypes. In Figure 4, we summarise these difficulties using a metaphor: Waddington’s Demon2.
Using all the available molecular information at the cellular and subcellular scales, the Demon tries to
predict the final outcome of all the microscopic interactions, failing to succeed due to the emergent
nature of multicellular systems.

5

lar diversity and (2) a predictable spatial organization
that allows coherent system-level responses. Increasing
cell types displays an evolutionary trend: with the rise of
animals, the number of different cellular phenotypes has
increased (68; 69). The current understanding of gener-
ating different cell states is grounded on the concept of
attractors (70; 71). By using simple models of gene-gene
interactions, it is possible to show that different stable
expression states are accessible from different initial con-
ditions. Small two-gene cross-inhibitory networks have
achieved this (72), and synthetic implementations exist
(73). But only recently has it been possible to design a
circuit capable of displaying many different states (5, see
Box 1).

How can we build MC systems with a spatial or-
ganization that can be predicted from the basic units
(genes, molecules and cells) and their interactions? Get-
ting closer to organs, organisms, and embryos implies
introducing several extra layers of complexity, and the
mapping between these components and the system-level
properties is known to be highly nonlinear (Box 2). In
other words, the nonlinear dynamics connecting gene net-
work states with the unfolding of cell-cell interactions
is far from trivial. This is particularly true with grow-
ing systems, where even the boundary conditions change
through development. However, there is a domain of
predictability given by engineering strategies that ex-
ploit some hierarchical cell-cell interactions. The best
candidate, which has a long tradition within embryology
and theoretical biology, is based on combining adhesion
molecules.

Adhesion dynamic and the associated cell displace-
ments occur via energy minimisation (48; 76). A model
can be easily defined by a cell population on a discrete
lattice. Cell states (cell types or engineered strains) are
indicated as σn ∈ {0, 1, 2, ...} and cells can move to neigh-
bouring sites. To illustrate how the model works, con-
sider a three-state example: two cell types plus empty
space, to be indicated as σ1,σ2 and σ0, respectively.

Different cells have different adhesion strengths. These
are defined by means of an adhesion matrix W:

W =

⎛
⎝

ω(σ0,σ0) ω(σ0,σ1) ω(σ0,σ2)
ω(σ1,σ0) ω(σ1,σ1) ω(σ1,σ2)
ω(σ2,σ0) ω(σ2,σ1) ω(σ2,σ2)

⎞
⎠ . (3)

As defined, we have: ω(a, b) = ω(b, a), and ω(σ0,σ0) = 0.
An energy function H that is defined for each lattice site
µ i. e. :

Hµ =
∑

ση∈Γµ

ω(σµ,ση) (4)

where Γµ is the set defined by the nearest neighbours
of a cell in position µ each of which occupies a position
η, and has a defined state ση. If we try to swap one
cell to one of its nearest locations, we first determine the

new energy H′ using the same expression. The energy
difference between the original and the chosen location
is ∆H = H′ −H∗. The probability associated to this is
given by the so-called Boltzmann rule:

P (σµ → ση) = 1
1 + e∆H/T

(5)

where the parameter T is a noise factor tuning the degree
of randomness associated to our model. The Boltzmann
factor e∆H/T acts in such a way that if ∆H = 0, the prob-
ability of swapping is 1/2. For small T , the probability
of swapping rapidly increases when ∆H > 0, whereas is
very small when ∆H < 0. The relative weights of the
matrix elements induce a hierarchy that allows to pre-
dict the kinds of patterns that can result from a given
engineering design associated to adhesion properties (see
77 for details).

This simple microscopic set of rules provides the causal
framework that explains re-aggregation experiments, as
shown in the sequence of Fig. 3a-c) displaying a set of
dissociated cells (two types of retinal cells) evolves to a
segregated structure (78). Following these basic princi-
ples, orthogonal cell adhesion toolboxes have been de-
signed to exploit the weight hierarchy, leading to syn-
thetic programmable morphologies (79; 80). Further-
more, using a stochastic recombinase genetic switch al-
lows programmable symmetry breaking and commitment
to downstream cell fates (6). This synthetic induction of
SB could be an important step towards inducing differ-
entiation in organoids.

The predictable nature of these designs faces challenges
when dealing with the reality of more complex cellular ag-
gregates and developmental processes. Along with sym-
metry breaking, population growth and the role played
by physical forces beyond differential adhesion need to
be considered, as well as intrinsic properties of cells and
tissues as agential materials (29).

C. Synthetic morphology and agential materials

The predictable nature of the previous examples be-
comes less reliable as we move towards complex MC sys-
tems, from organs to full organisms. The lack of pre-
dictability is due to the nonlinear nature of the genotype-
phenotype mapping (see Box 2). In a formal fashion, it
is a mapping Ω between the space of genotypes G and
the space of (possible) phenotypes Φ:

Ω : G −→ Φ (10)

In a nutshell, while the nature of adhesion rules allows
programmable designs, living agents are the result of
developmental programs that require growth and self-
organisation, as well as regeneration, reproduction and
behaviour. The information at the level of genes and

Figure 4. Prediction and emergence in multicellularity. One major challenge for synthetic multicellu-
lar designs is associated with the lack of predictability that would be in place if the genotype-phenotype
map were simple and different scales reducible to lower-level entities. Here we depict the “Waddington
demon”: an idealized entity trying to predict higher-scale structures (organs, embryos or organisms)
from the observable microscopic dynamics (genes, gene interactions and early developmental states).
This cartoon summarizes the difficulties in predicting multicellular complexity, both within devel-
opmental biology and in bioengineering. Because of the presence of emergent phenomena, such a
prediction might be difficult to achieve unless we use the right scale, ignoring the details on the lower
levels (drawing by R. Solé).

Is the emergent nature of MC complexity a sharp obstacle to our understanding of how cells
self-organize into tissues, organs or even organisms? Perhaps not. Synthetic biology, stem cell-derived
organoids, and the synthesis of living robots allow us to interrogate nature in novel ways, considering
emergent properties in explicit ways that allow experimental validation of hypotheses and formulating
models that deal with self-organization and agency. These tools can collectively bridge the gap between
cellular- and tissue/organ-level biological models, resulting in a more realistic, functionally meaningful
representation of the in vivo tissue spatial organization and the interactions between the cellular and
extracellular environments. Organoid designs offer a unique opportunity to analyse the nature of
emergence and the limits imposed by context and self-organization on the generative potential of
bioengineering, while Xenobots and Anthrobots are the front layers that will help us understand
complex biology at the organismal level, from development to behaviour. All the lessons obtained by
answering the open problems discussed above will be instrumental to understanding the evolution of
complexity, but they also allow the development of new ways to deal with health and disease beyond

2 This hypothetical creature is inspired by Laplace’s Demon, proposed by Pierre-Simon Laplace, capable of knowing the
precise location and momentum of every atom in the universe. With this information, it could predict the past and future of
every particle, demonstrating a deterministic universe where the future is entirely predictable given complete knowledge of
the present.
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the molecular and cellular scales. Agential interventions (using patient-specific Anthrobots injected
into the body) could be used to learn about the state of tissues or to execute repairs.

Acknowledgments: R.S., N.C. and J.P.M. thank the members of the Complex Systems Lab for useful discussions
and Aurora Picornell for her inspiring ideas. This work has been supported by an AGAUR 2021 SGR 0075 grant
and the Santa Fe Institute. J.P.M. was supported by funding from the Spanish government “PRE2020-091968”
(MCIN/AEI) grant. J.G.O. was supported by the Spanish Ministry of Science and Innovation, the Spanish State
Research Agency and FEDER (project PID2021-127311NB-I00), by the Maria de Maeztu Programme for Units of
Excellence in R&D (project CEX2018-000792-M), and by the ICREA Academia programme. This work has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program ERCCoG-2020 101002478 ENGINORG to N.M. M.L. gratefully acknowledges the support
of Grant 62212 from the John Templeton Foundation and Grant Number W911NF-23-1-0100 from the Army
Research Office. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the
U.S. Government.

References

1. Knoll, A.H. The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Sciences
2011, 39, 217–239. doi:10.1146/annurev.earth.031208.100209.

2. Grosberg, R.K.; Strathmann, R.R. The evolution of multicellularity: a minor major transition? Annu. Rev.
Ecol. Evol. Syst. 2007, 38, 621–654. doi:10.1146/annurev.ecolsys.36.102403.114735.

3. Levin, M. The Computational Boundary of a “Self”: Developmental Bioelectricity Drives Multicellularity
and Scale-Free Cognition. Frontiers in Psychology 2019, 10. doi:10.3389/fpsyg.2019.02688.

4. Basu, S.; Gerchman, Y.; Collins, C.H.; Arnold, F.H.; Weiss, R. A synthetic multicellular system for pro-
grammed pattern formation. Nature 2005, 434, 1130–1134. doi:10.1038/nature03461.

5. Zhu, R.; del Rio-Salgado, J.M.; Garcia-Ojalvo, J.; Elowitz, M.B. Synthetic multistability in mammalian cells.
Science 2022, 375. doi:10.1126/science.abg9765.

6. Wauford, N.; Patel, A.; Tordoff, J.; Enghuus, C.; Jin, A.; Toppen, J.; Kemp, M.L.; Weiss, R. Synthetic
symmetry breaking and programmable multicellular structure formation. Cell Systems 2023, 14, 806–818.
doi:10.1016/j.cels.2023.08.001.

7. Herron, M.D.; Borin, J.M.; Boswell, J.C.; Walker, J.; Chen, I.C.K.; Knox, C.A.; Boyd, M.; Rosenzweig, F.;
Ratcliff, W.C. De novo origins of multicellularity in response to predation. Scientific reports 2019, 9, 2328.
doi:10.1038/s41598-019-39558-8.

8. Bozdag, G.O.; Libby, E.; Pineau, R.; Reinhard, C.T.; Ratcliff, W.C. Oxygen suppression of macroscopic
multicellularity. Nature communications 2021, 12, 2838. doi:10.1038/s41467-021-23104-0.

9. Ruiz-Trillo, I.; Burger, G.; Holland, P.W.; King, N.; Lang, B.F.; Roger, A.J.; Gray, M.W. The origins of multicellu-
larity: a multi-taxon genome initiative. TRENDS in Genetics 2007, 23, 113–118. doi:10.1016/j.tig.2007.01.005.

10. Ruiz-Trillo, I.; Nedelcu, A.M. Evolutionary transitions to multicellular life: principles and mechanisms; Vol. 2,
Springer, 2015; pp. 53–0763. doi:10.5860/choice.192366.

11. Sebé-Pedrós, A.; Degnan, B.M.; Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nature
Reviews Genetics 2017, 18, 498–512. doi:10.1038/nrg.2017.21.

12. Newman, S.A.; Bhat, R. Dynamical patterning modules: a “pattern language” for development and evolution
of multicellular form. International Journal of Developmental Biology 2009, 53, 693. doi:10.1387/ijdb.072481sn.

13. Newman, S.A. Physico-genetic determinants in the evolution of development. Science 2012, 338, 217–219.
doi:10.1126/science.1222003.

14. Salazar-Ciudad, I.; Newman, S.; Solé, R. Phenotypic and dynamical transitions in model genetic networks
I. Emergence of patterns and genotype-phenotype relationships. Evolution & development 2001, 3, 84–94.
doi:10.1046/j.1525-142x.2001.003002084.x.

15. Ratcliff, W.C.; Denison, R.F.; Borrello, M.; Travisano, M. Experimental evolution of multicellularity. Proceed-
ings of the National Academy of Sciences 2012, 109, 1595–1600. doi:10.1073/pnas.1115323109.

16. Kriegman, S.; Blackiston, D.; Levin, M.; Bongard, J. A scalable pipeline for designing reconfigurable
organisms. Proceedings of the National Academy of Sciences 2020, 117, 1853–1859. doi:10.1073/pnas.1910837117.

17. Blackiston, D.; Kriegman, S.; Bongard, J.; Levin, M. Biological Robots: Perspectives on an Emerging
Interdisciplinary Field. Soft Robotics 2023, 10, 674–686. doi:10.1089/soro.2022.0142.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1146/annurev.earth.031208.100209
https://doi.org/10.1146/annurev.ecolsys.36.102403.114735
https://doi.org/10.3389/fpsyg.2019.02688
https://doi.org/10.1038/nature03461
https://doi.org/10.1126/science.abg9765
https://doi.org/10.1016/j.cels.2023.08.001
https://doi.org/10.1038/s41598-019-39558-8
https://doi.org/10.1038/s41467-021-23104-0
https://doi.org/10.1016/j.tig.2007.01.005
https://doi.org/10.5860/choice.192366
https://doi.org/10.1038/nrg.2017.21
https://doi.org/10.1387/ijdb.072481sn
https://doi.org/10.1126/science.1222003
https://doi.org/10.1046/j.1525-142x.2001.003002084.x
https://doi.org/10.1073/pnas.1115323109
https://doi.org/10.1073/pnas.1910837117
https://doi.org/10.1089/soro.2022.0142
https://doi.org/10.20944/preprints202407.1896.v1


15 of 20

18. Goodwin, B. How the leopard changed its spots: The evolution of complexity; Vol. 24, Princeton University Press,
2001.

19. Alberch, P. The logic of monsters: Evidence for internal constraint in development and evolution. Geobios
1989, 22, 21–57. doi:10.1016/s0016-6995(89)80006-3.

20. Alberch, P. From genes to phenotype: dynamical systems and evolvability. Genetica 1991, 84, 5–11.
doi:10.1007/bf00123979.

21. Turing, A.M. The chemical basis of morphogenesis. Bulletin of mathematical biology 1990, 52, 153–197.
doi:10.1007/bf02459572.

22. Huang, S. The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for
post-Darwinian biology? Bioessays 2012, 34, 149–157. doi:10.1002/bies.201100031.

23. Furusawa, C.; Kaneko, K. Origin of complexity in multicellular organisms. Physical review letters 2000,
84, 6130. doi:10.1103/physrevlett.84.6130.

24. Nadell, C.D.; Bucci, V.; Drescher, K.; Levin, S.A.; Bassler, B.L.; Xavier, J.B. Cutting through the complexity of
cell collectives. Proceedings of the Royal Society B: biological sciences 2013, 280, 20122770.

25. McMillen, P.; Levin, M. Collective intelligence: A unifying concept for integrating biology across scales and
substrates. Communications Biology 2024, 7, 378. doi:10.1038/s42003-024-06037-4.

26. Solé, R. Synthetic transitions: towards a new synthesis. Philosophical Transactions of the Royal Society B:
Biological Sciences 2016, 371, 20150438. doi:10.1098/rstb.2015.0438.

27. Ebrahimkhani, M.R.; Ebisuya, M. Synthetic developmental biology: build and control multicellular systems.
Current opinion in chemical biology 2019, 52, 9–15. doi:10.1016/j.cbpa.2019.04.006.

28. Martínez-Ara, G.; Stapornwongkul, K.S.; Ebisuya, M. Scaling up complexity in synthetic developmental
biology. Science 2022, 378, 864–868. doi:10.1126/science.add9666.

29. Davies, J.; Levin, M. Synthetic morphology with agential materials. Nature Reviews Bioengineering 2023,
1, 46–59. doi:10.1038/s44222-022-00001-9.

30. Levin, M. Darwin’s agential materials: evolutionary implications of multiscale competency in developmental
biology. Cellular and Molecular Life Sciences 2023, 80. doi:10.1007/s00018-023-04790-z.

31. Kamm, R.D.; Bashir, R. Creating Living Cellular Machines. Annals of Biomedical Engineering 2013, 42, 445–459.
doi:10.1007/s10439-013-0902-7.

32. Kamm, R.D.; Bashir, R.; Arora, N.; Dar, R.D.; Gillette, M.U.; others. Perspective: The promise of multi-cellular
engineered living systems. APL Bioengineering 2018, 2. doi:10.1063/1.5038337.

33. Bongard, J.; Levin, M. Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors
in Light of the Modern Science of Machine Behavior. Frontiers in Ecology and Evolution 2021, 9. https:
//doi.org/10.3389/fevo.2021.650726.

34. Bongard, J.; Levin, M. There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded,
Multi-Scale Machines. Biomimetics 2023, 8, 110. doi:10.3390/biomimetics8010110.

35. Bashor, C.J.; Horwitz, A.A.; Peisajovich, S.G.; Lim, W.A. Rewiring cells: synthetic biology as a tool to
interrogate the organizational principles of living systems. Annual review of biophysics 2010, 39, 515–537.
doi:10.1146/annurev.biophys.050708.133652.

36. Nielsen, A.A.; Der, B.S.; Shin, J.; Vaidyanathan, P.; Paralanov, V.; Strychalski, E.A.; Ross, D.; Densmore, D.;
Voigt, C.A. Genetic circuit design automation. Science 2016, 352, aac7341. doi:10.1126/science.aac7341.

37. Cameron, D.E.; Bashor, C.J.; Collins, J.J. A brief history of synthetic biology. Nature Reviews Microbiology
2014, 12, 381–390. doi:10.1038/nrmicro3239.

38. Ma, Y.; Budde, M.W.; Mayalu, M.N.; Zhu, J.; Lu, A.C.; Murray, R.M.; Elowitz, M.B. Synthetic mammalian
signaling circuits for robust cell population control. Cell 2022, 185, 967–979.e12. doi:10.1016/j.cell.2022.01.026.

39. Youk, H.; Lim, W.A. Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social
Behaviors. Science 2014, 343. doi:10.1126/science.1242782.

40. Amos, M. Cellular computing; Systems Biology, 2004. doi:10.1093/oso/9780195155396.001.0001.
41. Grozinger, L.; Amos, M.; Gorochowski, T.E.; Carbonell, P.; Oyarzún, D.A.; Stoof, R.; Fellermann, H.; Zuliani,

P.; Tas, H.; Goñi-Moreno, A. Pathways to cellular supremacy in biocomputing. Nature communications 2019,
10, 5250. doi:10.1038/s41467-019-13232-z.

42. Goñi-Moreno, Á. Biocomputation: Moving Beyond Turing with Living Cellular Computers. Communications
of the ACM 2024, 67, 70–77. doi:10.1145/3635470.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1016/s0016-6995(89)80006-3
https://doi.org/10.1007/bf00123979
https://doi.org/10.1007/bf02459572
https://doi.org/10.1002/bies.201100031
https://doi.org/10.1103/physrevlett.84.6130
https://doi.org/10.1038/s42003-024-06037-4
https://doi.org/10.1098/rstb.2015.0438
https://doi.org/10.1016/j.cbpa.2019.04.006
https://doi.org/10.1126/science.add9666
https://doi.org/10.1038/s44222-022-00001-9
https://doi.org/10.1007/s00018-023-04790-z
https://doi.org/10.1007/s10439-013-0902-7
https://doi.org/10.1063/1.5038337
https://doi.org/10.3389/fevo.2021.650726
https://doi.org/10.3389/fevo.2021.650726
https://doi.org/10.3390/biomimetics8010110
https://doi.org/10.1146/annurev.biophys.050708.133652
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1038/nrmicro3239
https://doi.org/10.1016/j.cell.2022.01.026
https://doi.org/10.1126/science.1242782
https://doi.org/10.1093/oso/9780195155396.001.0001
https://doi.org/10.1038/s41467-019-13232-z
https://doi.org/10.1145/3635470
https://doi.org/10.20944/preprints202407.1896.v1


16 of 20

43. Tamsir, A.; Tabor, J.J.; Voigt, C.A. Robust multicellular computing using genetically encoded NOR gates and
chemical ‘wires’. Nature 2011, 469, 212–215. doi:10.1038/nature09565.

44. Regot, S.; Macia, J.; Conde, N.; Furukawa, K.; Kjellén, J.; Peeters, T.; Hohmann, S.; de Nadal, E.; Posas, F.; Solé,
R. Distributed biological computation with multicellular engineered networks. Nature 2011, 469, 207–211.
doi:10.1038/nature09679.

45. Moon, T.S.; Lou, C.; Tamsir, A.; Stanton, B.C.; Voigt, C.A. Genetic programs constructed from layered logic
gates in single cells. Nature 2012, 491, 249–253. doi:10.1038/nature11516.

46. Macia, J.; Manzoni, R.; Conde, N.; Urrios, A.; de Nadal, E.; Solé, R.; Posas, F. Implementation of Complex
Biological Logic Circuits Using Spatially Distributed Multicellular Consortia. PLOS Computational Biology
2016, 12, e1004685. doi:10.1371/journal.pcbi.1004685.

47. Song, H.; Ding, M.Z.; Jia, X.Q.; Ma, Q.; Yuan, Y.J. Synthetic microbial consortia: from systematic analysis to
construction and applications. Chemical Society Reviews 2014, 43, 6954–6981. doi:10.1039/c4cs00114a.

48. Steinberg, M.S. Differential adhesion in morphogenesis: a modern view. Current opinion in genetics &
development 2007, 17, 281–286. doi:10.1016/j.gde.2007.05.002.

49. Krens, S.G.; Heisenberg, C.P. Cell sorting in development. Current topics in developmental biology 2011,
95, 189–213. doi:10.1016/b978-0-12-385065-2.00006-2.

50. Davies, J.A. Synthetic morphology: prospects for engineered, self-constructing anatomies. Journal of anatomy
2008, 212, 707–719. doi:10.1111/j.1469-7580.2008.00896.x.

51. Urrios, A.; Macia, J.; Manzoni, R.; Conde, N.; Bonforti, A.; de Nadal, E.; Posas, F.; Solé, R. A Synthetic
Multicellular Memory Device. ACS Synthetic Biology 2016, 5, 862–873. doi:10.1021/acssynbio.5b00252.

52. Macia, J.; Vidiella, B.; Solé, R.V. Synthetic associative learning in engineered multicellular consortia. Journal
of The Royal Society Interface 2017, 14, 20170158. doi:10.1098/rsif.2017.0158.

53. Macia, J.; Sole, R. How to Make a Synthetic Multicellular Computer. PLoS ONE 2014, 9, e81248. https:
//doi.org/10.1371/journal.pone.0081248

54. Hopfield, J. Physics, computation, and why biology looks so different. Journal of Theoretical Biology 1994,
171, 53–60. doi:10.1006/jtbi.1994.1211.

55. Voigt, C.A. Genetic parts to program bacteria. Current opinion in biotechnology 2006, 17, 548–557. https:
//doi.org/10.1016/j.copbio.2006.09.001.

56. Ruder, W.C.; Lu, T.; Collins, J.J. Synthetic biology moving into the clinic. Science 2011, 333, 1248–1252.
doi:10.1126/science.1206843.

57. Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics
2012, 13, 455–468. doi:10.1038/nrg3197.

58. Brophy, J.A.; Voigt, C.A. Principles of genetic circuit design. Nature methods 2014, 11, 508–520. https:
//doi.org/10.1038/nmeth.2926

59. Dannenfelser, R.; Allen, G.M.; VanderSluis, B.; Koegel, A.K.; Levinson, S.; Stark, S.R.; Yao, V.; Tadych, A.;
Troyanskaya, O.G.; Lim, W.A. Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell
Therapies. Cell Systems 2020, 11, 215–228.e5. doi:10.1016/j.cels.2020.08.002.

60. Vidiella, B.; Guillamon, A.; Sardanyés, J.; Maull, V.; Pla, J.; Conde, N.; Solé, R. Engineering self-organized
criticality in living cells. Nature communications 2021, 12, 4415. doi:10.1038/s41467-021-24695-4.

61. Solé, R.; Amor, D.R.; Duran-Nebreda, S.; Conde-Pueyo, N.; Carbonell-Ballestero, M.; Montañez, R. Synthetic
collective intelligence. Biosystems 2016, 148, 47–61. doi:10.1016/j.biosystems.2016.01.002.

62. Solé, R.V.; Macia, J. Expanding the landscape of biological computation with synthetic multicellular consortia.
Natural Computing 2013, 12, 485–497. doi:10.1007/s11047-013-9380-y.

63. Solé, R.; Valverde, S. Evolving complexity: how tinkering shapes cells, software and ecological networks.
Philosophical Transactions of the Royal Society B: Biological Sciences 2020, 375, 20190325. doi:10.1098/rstb.2019.0325.

64. Koza, J.R.; Keane, M.A.; Streeter, M.J. Evolving inventions. Scientific American 2003, 288, 52–59. https:
//doi.org/10.1038/scientificamerican0203-52.

65. Wang, B.; Kitney, R.I.; Joly, N.; Buck, M. Engineering modular and orthogonal genetic logic gates for robust
digital-like synthetic biology. Nature communications 2011, 2, 508. doi:10.1038/ncomms1516.

66. Moreno, A.; Etxeberria, A. Agency in natural and artificial systems. Artificial Life 2005, 11, 161–175.
doi:10.1162/1064546053278919.

67. Moreno, A. On minimal autonomous agency: natural and artificial. Complex Systems 2018, 27, 289–313.
doi:10.25088/complexsystems.27.3.289.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1038/nature09565
https://doi.org/10.1038/nature09679
https://doi.org/10.1038/nature11516
https://doi.org/10.1371/journal.pcbi.1004685
https://doi.org/10.1039/c4cs00114a
https://doi.org/10.1016/j.gde.2007.05.002
https://doi.org/10.1016/b978-0-12-385065-2.00006-2
https://doi.org/10.1111/j.1469-7580.2008.00896.x
https://doi.org/10.1021/acssynbio.5b00252
https://doi.org/10.1098/rsif.2017.0158
https://doi.org/10.1371/journal.pone.0081248
https://doi.org/10.1371/journal.pone.0081248
https://doi.org/10.1006/jtbi.1994.1211
https://doi.org/10.1016/j.copbio.2006.09.001
https://doi.org/10.1016/j.copbio.2006.09.001
https://doi.org/10.1126/science.1206843
https://doi.org/10.1038/nrg3197
https://doi.org/10.1038/nmeth.2926
https://doi.org/10.1038/nmeth.2926
https://doi.org/10.1016/j.cels.2020.08.002
https://doi.org/10.1038/s41467-021-24695-4
https://doi.org/10.1016/j.biosystems.2016.01.002
https://doi.org/10.1007/s11047-013-9380-y
https://doi.org/10.1098/rstb.2019.0325
https://doi.org/10.1038/scientificamerican0203-52
https://doi.org/10.1038/scientificamerican0203-52
https://doi.org/10.1038/ncomms1516
https://doi.org/10.1162/1064546053278919
https://doi.org/10.25088/complexsystems.27.3.289
https://doi.org/10.20944/preprints202407.1896.v1


17 of 20

68. Bonner, J.T. The evolution of complexity by means of natural selection; Princeton University Press, 1988.
doi:10.1515/9780691222110.

69. Valentine, J.W.; Collins, A.G.; Meyer, C.P. Morphological complexity increase in metazoans. Paleobiology
1994, 20, 131–142. doi:10.1017/s0094837300012641.

70. Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of theoretical
biology 1969, 22, 437–467. doi:10.1016/0022-5193(69)90015-0.

71. Huang, S. Multistability and multicellularity: cell fates as high-dimensional attractors of gene regulatory
networks. In Computational Systems Biology; Elsevier, 2006; pp. 293–326. doi:10.1016/b978-012088786-
6/50033-2.

72. Koseska, A.; Zaikin, A.; Kurths, J.; García-Ojalvo, J. Timing Cellular Decision Making Under Noise via
Cell–Cell Communication. PLoS ONE 2009, 4, e4872. doi:10.1371/journal.pone.0004872.

73. Gardner, T.S.; Cantor, C.R.; Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature
2000, 403, 339–342. doi:10.1038/35002131.

74. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences 1982, 79, 2554–2558. doi:10.1073/pnas.79.8.2554.

75. Zhou, J.X.; Huang, S. Understanding gene circuits at cell-fate branch points for rational cell reprogramming.
Trends in Genetics 2011, 27, 55–62. doi:10.1016/j.tig.2010.11.002.

76. Deutsch, A.; Dormann, S. Mathematical modeling of biological pattern formation; Springer, 2005; pp. 49–61.
doi:10.1007/978-1-4899-7980-3_3.

77. Ollé-Vila, A.; Duran-Nebreda, S.; Conde-Pueyo, N.; Montañez, R.; Solé, R. A morphospace for synthetic or-
gans and organoids: the possible and the actual. Integrative Biology 2016, 8, 485–503. doi:10.1039/c5ib00324e.

78. Mombach, J.C.; Glazier, J.A.; Raphael, R.C.; Zajac, M. Quantitative comparison between differential adhesion
models and cell sorting in the presence and absence of fluctuations. Physical Review Letters 1995, 75, 2244.
doi:10.1103/physrevlett.75.2244.

79. Glass, D.S.; Riedel-Kruse, I.H. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular
morphologies and patterns. Cell 2018, 174, 649–658. doi:10.1016/j.cell.2018.06.041.

80. Stevens, A.J.; Harris, A.R.; Gerdts, J.; Kim, K.H.; Trentesaux, C.; Ramirez, J.T.; McKeithan, W.L.; Fattahi,
F.; Klein, O.D.; Fletcher, D.A.; others. Programming multicellular assembly with synthetic cell adhesion
molecules. Nature 2023, 614, 144–152. doi:10.1038/s41586-022-05622-z.

81. Mjolsness, E.; Sharp, D.H.; Reinitz, J. A connectionist model of development. Journal of theoretical Biology
1991, 152, 429–453. doi:10.1016/s0022-5193(05)80391-1.

82. Salazar-Ciudad, I.; Garcia-Fernández, J.; Solé, R.V. Gene networks capable of pattern formation: from
induction to reaction–diffusion. Journal of theoretical biology 2000, 205, 587–603. doi:10.1006/jtbi.2000.2092.

83. Solé, R.V.; Salazar-Ciudad, I.; Garcia-Fernández, J. Common pattern formation, modularity and phase
transitions in a gene network model of morphogenesis. Physica A: Statistical Mechanics and its Applications
2002, 305, 640–654. doi:10.1016/s0378-4371(01)00580-5.

84. Koch, A.J.; Meinhardt, H. Biological pattern formation: from basic mechanisms to complex structures.
Reviews of modern physics 1994, 66, 1481. doi:10.1103/revmodphys.66.1481.

85. Murray, J.D. Mathematical biology II, 3 ed.; Interdisciplinary applied mathematics, Springer: New York, NY,
2002.

86. Sagués, F.; Sancho, J.M.; García-Ojalvo, J. Spatiotemporal order out of noise. Reviews of Modern Physics 2007,
79, 829–882. doi:10.1103/revmodphys.79.829.

87. Munteanu, A.; Sole, R.V. Neutrality and robustness in evo-devo: emergence of lateral inhibition. PLoS
computational biology 2008, 4, e1000226. doi:10.1371/journal.pcbi.1000226.

88. Cotterell, J.; Sharpe, J. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for
interpreting morphogen gradients. Molecular systems biology 2010, 6, 425. doi:10.1038/msb.2010.74.

89. Solé, R.V.; Fernández, P.; Kauffman, S.A. Adaptive walks in a gene network model of morphogenesis:
insights into the Cambrian explosion. arXiv preprint q-bio/0311013 2003, 47 7-8, 685–93. doi:10.48550/arxiv.q-
bio/0311013.

90. Stern, M.; Murugan, A. Learning without neurons in physical systems. Annual Review of Condensed Matter
Physics 2023, 14, 417–441. doi:10.1146/annurev-conmatphys-040821-113439.

91. Stern, M.; Liu, A.J.; Balasubramanian, V. Physical effects of learning. Physical Review E 2024, 109, 024311.
doi:10.1103/physreve.109.024311.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1515/9780691222110
https://doi.org/10.1017/s0094837300012641
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/b978-012088786-6/50033-2
https://doi.org/10.1016/b978-012088786-6/50033-2
https://doi.org/10.1371/journal.pone.0004872
https://doi.org/10.1038/35002131
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/j.tig.2010.11.002
https://doi.org/10.1007/978-1-4899-7980-3_3
https://doi.org/10.1039/c5ib00324e
https://doi.org/10.1103/physrevlett.75.2244
https://doi.org/10.1016/j.cell.2018.06.041
https://doi.org/10.1038/s41586-022-05622-z
https://doi.org/10.1016/s0022-5193(05)80391-1
https://doi.org/10.1006/jtbi.2000.2092
https://doi.org/10.1016/s0378-4371(01)00580-5
https://doi.org/10.1103/revmodphys.66.1481
https://doi.org/10.1103/revmodphys.79.829
https://doi.org/10.1371/journal.pcbi.1000226
https://doi.org/10.1038/msb.2010.74
https://doi.org/10.48550/arxiv.q-bio/0311013
https://doi.org/10.48550/arxiv.q-bio/0311013
https://doi.org/10.1146/annurev-conmatphys-040821-113439
https://doi.org/10.1103/physreve.109.024311
https://doi.org/10.20944/preprints202407.1896.v1


18 of 20

92. Pfeifer, R.; Scheier, C. Understanding intelligence; MIT press, 2001. doi:10.7551/mitpress/6979.001.0001.
93. De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A.

Mathematical formulation of multilayer networks. Physical Review X 2013, 3, 041022. https://doi.org/10.110
3/physrevx.3.041022.

94. Ball, P. Organisms as agents of evolution. John Templeton Foundation: West Conshohocken, PA, USA 2023.
95. Corrò, C.; Novellasdemunt, L.; Li, V.S. A brief history of organoids. American Journal of Physiology-Cell

Physiology 2020, 319, C151–C165. doi:10.1152/ajpcell.00120.2020.
96. Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: modeling development and disease using organoid

technologies. Science 2014, 345, 1247125. doi:10.1126/science.1247125.
97. Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 2013, 493, 318–326.

doi:10.1038/nature11859.
98. Moris, N.; Anlas, K.; van den Brink, S.C.; Alemany, A.; Schröder, J.; Ghimire, S.; Balayo, T.; van Oudenaarden,

A.; Martinez Arias, A. An in vitro model of early anteroposterior organization during human development.
Nature 2020, 582, 410–415. doi:10.1038/s41586-020-2383-9.

99. Beccari, L.; Moris, N.; Girgin, M.; Turner, D.A.; Baillie-Johnson, P.; Cossy, A.C.; Lutolf, M.P.; Duboule, D.;
Arias, A.M. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature
2018, 562, 272–276. doi:10.1038/s41586-018-0578-0.

100. Lane, N. Life ascending: the ten great inventions of evolution; WW Norton: New York, NY, 2010.
101. Llinás, R.R. I of the vortex: From neurons to self; A Bradford Book, Bradford Books: Cambridge, MA, 2002.
102. Jablonka, E.; Lamb, M.J. The evolution of information in the major transitions. Journal of theoretical biology

2006, 239, 236–246. doi:10.1016/j.jtbi.2005.08.038.
103. Gunawardena, J. Learning Outside the Brain: Integrating Cognitive Science and Systems Biology. Proceedings

of the IEEE 2022, 110, 590–612. doi:10.1109/jproc.2022.3162791.
104. Gumuskaya, G.; Srivastava, P.; Cooper, B.G.; Lesser, H.; Semegran, B.; Garnier, S.; Levin, M. Motile Living

Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells. Advanced Science 2024, 11, 2303575.
doi:10.1002/advs.202303575.

105. Fields, C.; Levin, M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in
Diverse Embodiments. Entropy 2022, 24, 819. doi:10.3390/e24060819.

106. Chernet, B.T.; Levin, M. Transmembrane voltage potential is an essential cellular parameter for the detection
and control of tumor development in aXenopusmodel. Disease Models & Mechanisms 2013, 6, 595–607.
doi:10.1242/dmm.010835.

107. Levin, M. Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. Progress in
Biophysics and Molecular Biology 2021, 165, 102–113. doi:10.1016/j.pbiomolbio.2021.04.007.

108. Smith, J.M.; Burian, R.; Kauffman, S.; Alberch, P.; Campbell, J.; Goodwin, B.; Lande, R.; Raup, D.; Wolpert, L.
Developmental constraints and evolution: a perspective from the Mountain Lake conference on development
and evolution. The Quarterly Review of Biology 1985, 60, 265–287. doi:10.1086/414425.

109. Ferrell, J.E. Bistability, Bifurcations, and Waddington’s Epigenetic Landscape. Current Biology 2012,
22, R458–R466. doi:10.1016/j.cub.2012.03.045.

110. Biswas, S.; Manicka, S.; Hoel, E.; Levin, M. Gene regulatory networks exhibit several kinds of memory:
Quantification of memory in biological and random transcriptional networks. iScience 2021, 24, 102131.
doi:10.1016/j.isci.2021.102131.

111. Biswas, S.; Clawson, W.; Levin, M. Learning in Transcriptional Network Models: Computational Discovery
of Pathway-Level Memory and Effective Interventions. International Journal of Molecular Sciences 2022, 24, 285.
doi:10.3390/ijms24010285.

112. Yang, C.Y.; Bialecka-Fornal, M.; Weatherwax, C.; Larkin, J.W.; Prindle, A.; Liu, J.; Garcia-Ojalvo, J.; Süel,
G.M. Encoding Membrane-Potential-Based Memory within a Microbial Community. Cell Systems 2020,
10, 417–423.e3. doi:10.1016/j.cels.2020.04.002.

113. Gabalda-Sagarra, M.; Carey, L.B.; Garcia-Ojalvo, J. Recurrence-based information processing in gene regula-
tory networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 2018, 28, 106313. doi:10.1063/1.5039861.

114. Vidal-Saez, M.S.; Vilarroya, O.; Garcia-Ojalvo, J. Biological computation through recurrence. Biochemical and
Biophysical Research Communications 2024, 728, 150301. doi:10.1016/j.bbrc.2024.150301.

115. Wilson, E.O. The insect societies; Harvard University Press: London, England, 1971.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.7551/mitpress/6979.001.0001
https://doi.org/10.1103/physrevx.3.041022
https://doi.org/10.1103/physrevx.3.041022
https://doi.org/10.1152/ajpcell.00120.2020
https://doi.org/10.1126/science.1247125
https://doi.org/10.1038/nature11859
https://doi.org/10.1038/s41586-020-2383-9
https://doi.org/10.1038/s41586-018-0578-0
https://doi.org/10.1016/j.jtbi.2005.08.038
https://doi.org/10.1109/jproc.2022.3162791
https://doi.org/10.1002/advs.202303575
https://doi.org/10.3390/e24060819
https://doi.org/10.1242/dmm.010835
https://doi.org/10.1016/j.pbiomolbio.2021.04.007
https://doi.org/10.1086/414425
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/j.isci.2021.102131
https://doi.org/10.3390/ijms24010285
https://doi.org/10.1016/j.cels.2020.04.002
https://doi.org/10.1063/1.5039861
https://doi.org/10.1016/j.bbrc.2024.150301
https://doi.org/10.20944/preprints202407.1896.v1


19 of 20

116. Bonabeau, E.; Theraulaz, G.; Deneubourg, J.L.; Aron, S.; Camazine, S. Self-organization in social insects.
Trends in ecology & evolution 1997, 12, 188–193. doi:10.1016/s0169-5347(97)01048-3.

117. Gordon, D.M. Ants at work: how an insect society is organized; Simon and Schuster, 1999.
118. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm intelligence: from natural to artificial systems; Oxford university

press, 1999; pp. I–XII, 1–307. doi:10.1093/oso/9780195131581.001.0001.
119. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Süel, G.M. Ion channels enable electrical communica-

tion in bacterial communities. Nature 2015, 527, 59–63. doi:10.1038/nature15709.
120. Larkin, J.W.; Zhai, X.; Kikuchi, K.; Redford, S.E.; Prindle, A.; Liu, J.; Greenfield, S.; Walczak, A.M.; Garcia-

Ojalvo, J.; Mugler, A.; Süel, G.M. Signal Percolation within a Bacterial Community. Cell Systems 2018,
7, 137–145.e3. doi:10.1016/j.cels.2018.06.005.

121. Martinez-Corral, R.; Liu, J.; Prindle, A.; Süel, G.M.; Garcia-Ojalvo, J. Metabolic basis of brain-like electrical
signalling in bacterial communities. Philosophical Transactions of the Royal Society B 2019, 374, 20180382.
doi:10.1098/rstb.2018.0382.

122. Libby, E.; Rainey, P.B. A conceptual framework for the evolutionary origins of multicellularity. Physical
biology 2013, 10, 035001. doi:10.1088/1478-3975/10/3/035001.

123. Yamamoto, H.; Moriya, S.; Ide, K.; Hayakawa, T.; Akima, H.; Sato, S.; Kubota, S.; Tanii, T.; Niwano, M.; Teller,
S.; Soriano, J.; Hirano-Iwata, A. Impact of modular organization on dynamical richness in cortical networks.
Science Advances 2018, 4. doi:10.1126/sciadv.aau4914.

124. Yamamoto, H.; Spitzner, F.P.; Takemuro, T.; Buendía, V.; Murota, H.; Morante, C.; Konno, T.; Sato, S.;
Hirano-Iwata, A.; Levina, A.; Priesemann, V.; Muñoz, M.A.; Zierenberg, J.; Soriano, J. Modular archi-
tecture facilitates noise-driven control of synchrony in neuronal networks. Science Advances 2023, 9.
doi:10.1126/sciadv.ade1755.

125. Kriegman, S.; Blackiston, D.; Levin, M.; Bongard, J. Kinematic self-replication in reconfigurable organisms.
Proceedings of the National Academy of Sciences 2021, 118, e2112672118. doi:10.1073/pnas.2112672118.

126. Gregory, T.R. The evolution of complex organs. Evolution: Education and Outreach 2008, 1, 358–389.
doi:10.1007/s12052-008-0076-1.

127. Theraulaz, G.; Bonabeau, E.; Deneubourg, J.L. The origin of nest complexity in social insects. Complexity
1998, 3, 15–25.

128. Bonabeau, E.; Theraulaz, G.; Deneubourg, J.L.; Franks, N.R.; Rafelsberger, O.; Joly, J.L.; Blanco, S. A model
for the emergence of pillars, walls and royal chambers in termite nests. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences 1998, 353, 1561–1576.

129. Turner, J.S. Termites as models of swarm cognition. Swarm intelligence 2011, 5, 19–43.
130. Foo, J.L.; Ling, H.; Lee, Y.S.; Chang, M.W. Microbiome engineering: Current applications and its future.

Biotechnology journal 2017, 12, 1600099. doi:10.1002/biot.201600099.
131. Dou, J.; Bennett, M.R. Synthetic biology and the gut microbiome. Biotechnology journal 2018, 13, 1700159.

doi:10.1002/biot.201700159.
132. Solé, R.V.; Montañez, R.; Duran-Nebreda, S. Synthetic circuit designs for earth terraformation. Biology Direct

2015, 10, 1–10. doi:10.1186/s13062-015-0064-7.
133. Conde-Pueyo, N.; Vidiella, B.; Sardanyés, J.; Berdugo, M.; Maestre, F.T.; De Lorenzo, V.; Solé, R. Synthetic biol-

ogy for terraformation lessons from mars, earth, and the microbiome. life 2020, 10, 14. doi:10.3390/life10020014.
134. Foster, K.R.; Schluter, J.; Coyte, K.Z.; Rakoff-Nahoum, S. The evolution of the host microbiome as an

ecosystem on a leash. Nature 2017, 548, 43–51. doi:10.1038/nature23292.
135. Zhang, F.; Guo, Z.; Li, Z.; Luan, H.; Yu, Y.; Zhu, A.T.; Ding, S.; Gao, W.; Fang, R.H.; Zhang, L.; others.

Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of
lung metastasis. Science Advances 2024, 10, eadn6157. doi:10.1126/sciadv.adn6157.

136. Kunitomo, H.; Sato, H.; Iwata, R.; Satoh, Y.; Ohno, H.; Yamada, K.; Iino, Y. Concentration memory-dependent
synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nature
Communications 2013, 4. doi:10.1038/ncomms3210.

137. Hiroki, S.; Yoshitane, H.; Mitsui, H.; Sato, H.; Umatani, C.; Kanda, S.; Fukada, Y.; Iino, Y. Molecular encoding
and synaptic decoding of context during salt chemotaxis in C. elegans. Nature Communications 2022, 13.
doi:10.1038/s41467-022-30279-7.

138. Vidal-Saez, M.S.; Vilarroya, O.; Garcia-Ojalvo, J. A multiscale sensorimotor model of experience-dependent
behavior in a minimal organism. Biophysical Journal 2024, 123, 1654–1667. doi:10.1016/j.bpj.2024.05.008.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1016/s0169-5347(97)01048-3
https://doi.org/10.1093/oso/9780195131581.001.0001
https://doi.org/10.1038/nature15709
https://doi.org/10.1016/j.cels.2018.06.005
https://doi.org/10.1098/rstb.2018.0382
https://doi.org/10.1088/1478-3975/10/3/035001
https://doi.org/10.1126/sciadv.aau4914
https://doi.org/10.1126/sciadv.ade1755
https://doi.org/10.1073/pnas.2112672118
https://doi.org/10.1007/s12052-008-0076-1
https://doi.org/10.1002/biot.201600099
https://doi.org/10.1002/biot.201700159
https://doi.org/10.1186/s13062-015-0064-7
https://doi.org/10.3390/life10020014
https://doi.org/10.1038/nature23292
https://doi.org/10.1126/sciadv.adn6157
https://doi.org/10.1038/ncomms3210
https://doi.org/10.1038/s41467-022-30279-7
https://doi.org/10.1016/j.bpj.2024.05.008
https://doi.org/10.20944/preprints202407.1896.v1


20 of 20

139. Lyon, P.; Keijzer, F.; Arendt, D.; Levin, M. Reframing cognition: getting down to biological basics. Philosophical
Transactions of the Royal Society B: Biological Sciences 2021, 376, 20190750. doi:10.1098/rstb.2019.0750.

140. Bongard, J.C. Evolutionary robotics: Taking a biologically inspired approach to the design of autonomous,
adaptive machines. Communications of the ACM 2013, 56, 74–83. doi:10.1145/2493883.

141. Nolfi, S.; Bongard, J.; Husbands, P.; Floreano, D., Evolutionary Robotics. In Springer Handbooks; Springer
International Publishing, 2016; p. 2035–2068. doi:10.1007/978-3-319-32552-1_76.

142. Seilacher, A. Fossil behavior. Scientific American 1967, 217, 72–83. doi:10.1038/scientificamerican0867-72.
143. Plotnick, R.E. Behavioral biology of trace fossils. Paleobiology 2012, 38, 459–473. doi:10.1666/11008.1.
144. Andrianantoandro, E.; Basu, S.; Karig, D.K.; Weiss, R. Synthetic biology: new engineering rules for an

emerging discipline. Molecular systems biology 2006, 2, 2006–0028. doi:10.1038/msb4100073.
145. Lopatkin, A.J.; Collins, J.J. Predictive biology: modelling, understanding and harnessing microbial complex-

ity. Nature Reviews Microbiology 2020, 18, 507–520. doi:10.1038/s41579-020-0372-5.
146. Lazebnik, Y. Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer cell 2002,

2, 179–182. doi:10.1016/s1535-6108(02)00133-2.
147. Lobo, D.; Solano, M.; Bubenik, G.A.; Levin, M. A linear-encoding model explains the variability of the target

morphology in regeneration. Journal of The Royal Society Interface 2014, 11, 20130918. doi:10.1098/rsif.2013.0918.
148. Corominas-Murtra, B.; Petridou, N. Viscoelastic Networks: Forming Cells and Tissues. Frontiers in Physics

2021, 9.
149. Petridou, N.I.; Corominas-Murtra, B.; Heisenberg, C.P.; Hannezo, E. Rigidity percolation uncovers a

structural basis for embryonic tissue phase transitions. Cell 2021, 184, 1914–1928.e19.
150. Lenne, P.F.; Trivedi, V. Sculpting tissues by phase transitions. Nature Communications 2022, 13, 664.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1896.v1

https://doi.org/10.1098/rstb.2019.0750
https://doi.org/10.1145/2493883
https://doi.org/10.1007/978-3-319-32552-1_76
https://doi.org/10.1038/scientificamerican0867-72
https://doi.org/10.1666/11008.1
https://doi.org/10.1038/msb4100073
https://doi.org/10.1038/s41579-020-0372-5
https://doi.org/10.1016/s1535-6108(02)00133-2
https://doi.org/10.1098/rsif.2013.0918
https://doi.org/10.20944/preprints202407.1896.v1

	References

