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Abstract

Two views of Pavlovian conditioning have dominated theoretical discourse. The classical as-
sociative view holds that associations are learned based on temporal contiguity between stimuli,
and conditioned responses directly reflect associative strength. The representational view, ex-
emplified by Rate Estimation Theory (Gallistel and Gibbon, 2000), holds that animals learn the
structure of the stimulus distribution, from which a measure of contingency between stimuli is
derived and used to generate conditioned responses. Unlike contiguity, contingency is a relative
measure, comparing the rate of reinforcement in the presence of a stimulus to the background
rate. This turns out to be crucial for explaining the effects of manipulating the background rate
while holding the stimulus-conditional rate constant (i.e., changing contingency without chang-
ing contiguity). It has also been argued that contiguity theories face irremediable conceptual
difficulties stemming from the coercion of continuous time into discrete bins. This paper makes
two contributions to the debate. First, it shows that Rate Estimation Theory faces its own com-
putational and conceptual problems. Second, it shows how to fix these problems while retaining
the core of the theory. Surprisingly, this leads to the insight that rates can be estimated using
an algorithm closely resembling a classical associative theory (the Rescorla-Wagner model). The
key difference lies in the response rule rather than in the learning rule. This suggests that the
gulf between associative and representational theories is smaller than previously thought.
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Introduction

The concept of association has played a central role in both the psychology and neurobiology of
learning, particularly as applied to Pavlovian conditioning. In a typical Pavlovian delay condi-
tioning protocol, a conditioned stimulus (CS, such as a tone) is presented for some duration, after
which an unconditioned stimulus (US, such as a food pellet) is delivered. With repeated pairings,
the animal comes to produce a conditioned response (CR) to the CS (e.g., anticipatory head en-
tries into the feeder trough). This is commonly considered a paradigmatic example of associative
learning—a theory-laden descriptor of both the experimental protocol and the underlying psycho-
logical/neurobiological process. It implies that the animal produces a CR because it has formed an
association between the CS and the US, realized neurally via synaptic plasticity.

The idea that associations underlie conditioned responding is both deeply entrenched and deeply
problematic, as reviewed in the next section. An important alternative to the associative view,
championed by Gallistel and his colleagues (Gallistel, 1990; Gallistel and Gibbon, 2000), is a repre-
sentational view of learning, according to which animals acquire and use facts about the structure
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of the stimulus distribution. In the context of Pavlovian conditioning, this view posits that animals
estimate conditional rates (i.e., the number of USs per unit of continuous time contributed by a
particular stimulus). In the model of Gallistel and Gibbon (2000), a CR is generated when the
CS rate exceeds the background rate by some threshold. More recent work has conceptualized the
decision process in information-theoretic terms, where the mutual information between the CS and
the US formalizes a notion of temporal contingency (Balsam et al., 2006; Balsam and Gallistel,
2009; Ward et al., 2012; Gallistel et al., 2014, 2019; Gallistel and Latham, 2022; Kalmbach et al.,
2019). These models have successfully explained a wealth of quantitative data on conditioning, and
have also overcome some of the conceptual challenges facing both association-based models and
prior definitions of contingency.

Despite their success, there are several important theoretical issues that need to be settled.
One issue is how to estimate the rates in a way that is both computationally plausible and math-
ematically defensible. A second issue is how to more rigorously relate the quantitative empirical
laws of conditioning to the predictions of the model. In this paper, we address these two issues
in a unified way, starting with a new analysis of the rate estimation problem that yields a simple
error-driven learning algorithm. We then show how the resulting rate estimates, when combined
with an information-theoretic decision rule, give rise to an important quantitative empirical law:
the timescale invariance of learning, as explained in the next section.

From contiguity to contingency

In most associative theories of learning, temporal contiguity between stimuli is a necessary (and
sometimes sufficient) condition for the formation an association. For this to be well-defined, we
need to specify what counts as temporally contiguous—what is the critical interstimulus interval?
At first glance, there does seem to be a critical interval, which differs across experimental protocols
(see Rescorla, 1988). For a given experimental protocol, there is a particular CS-US interval which
produces the fastest CR acquisition, where acquisition speed is typically measured as the inverse
number of reinforcements until the CR rate meets an acquisition criterion. It is important to
note, however, that this assumes a fixed intertrial interval. If the intertrial interval is rescaled to
maintain a fixed ratio with the interstimulus interval, then the acquisition speed is constant across
different interstimulus intervals, a phenomenon known as timescale invariance (Gibbon et al., 1977;
Gallistel and Gibbon, 2000).1 Put another way, there is no critical interstimulus interval. This fact
seems devastating for the claim that temporal contiguity is a necessary condition for association
formation, and hence conditioned responding.

One possible remedy is to invoke cue competition. In addition to the CS, we can posit a constant
“background” stimulus which also forms an association with the US. The CR is determined by the
combination of CS and background associations. The CS and background stimulus also compete
with one another during learning, such that credit for the US is split between the CS and background
stimulus. The intertrial interval can then be viewed as an extinction period for the background
stimulus, weakening its association and thereby allowing the CS to take more credit for the US.
Unfortunately, this won’t (without further assumptions) solve the problem of timescale invariance;
the CS association is strengthened and the background association is weakened, but these two

1Some studies have shown that timescale invariance breaks under some circumstances (Lattal, 1999; Holland, 2000),
but as pointed out by Ward et al. (2012), these results should be interpreted as caution, because their dependent
variable was not reinforcements to acquisition.
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changes cancel each other out in the CR, which combines the CS and background associative
strengths.

The Rescorla-Wagner model

To make the preceding point concrete, let’s look at the most influential model of associative learning,
the Rescorla-Wagner model (Rescorla and Wagner, 1972). This model operates in discrete time,
so we need to divide continuous time into bins of some size, which we index by n (we will return
to the issue of discrete vs. continuous time shortly). At time n, the US prediction r̂(n) is a linear
combination of CS associative strengths wi(n) and the CS presence xi(n) ∈ {0, 1} for CS i:

r̂(n) = wb(n) +
∑
i

wi(n)xi(n), (1)

where b indicates a “background” stimulus b which is constantly present; implicitly, xb(n) = 1
for all n. The CR is typically assumed to be a monotonic function of the US prediction. When
the US r(n) ∈ {0, 1} is delivered, the associative strength is updated based on the error signal
δ(n) = r(n)− r̂(n):

wi(n+ 1) = wi(n) + αxi(n)δ(n), (2)

where α ∈ [0, 1] is a learning rate. We will study this model in the simple setting where there is a
single cue (which we denote by i) along with the background stimulus b. Using this simple model,
we examine the effects of changing the interstimulus and intertrial intervals on the US prediction
(and by extension the CR). If we define the acquisition criterion as some fraction of the asymptotic
US prediction, r̂(∞), then acquisition speed will be monotonic function of r̂(∞). We can thus focus
our analysis on the asymptotics of the Rescorla-Wagner model.

For the single cue setting, the asymptotic weights can be found analytically (Chapman and
Robbins, 1990; Gallistel, 1990; Danks, 2003):

wb(∞) =
R̄− R̄i

C − T
(3)

wi(∞) =
R̄i

T
− wb(∞), (4)

where T is the interstimulus (CS-US) interval, C is the US-US interval (the sum of the interstimulus
and intertrial intervals, also known as the cycle time), R̄i is the average number of reinforcements
per trial during the CS, and R̄ is the average number of total reinforcements per trial (including
the intertrial interval). Technically, the solution depends on the time discretization, where each
timestep n increments time by ∆t; since the discretization only changes the US prediction by a
scale factor that doesn’t depend on any of the experimental parameters, we implicitly set it to 1.
However, time discretization will come back to bite later.

In a standard delay conditioning protocol, R̄i = R̄ = 1, so that wi(∞) = 1/T and wb(∞) = 0.
This conforms to the intuition that the CS should receive all of the credit since the US only appears
during the CS. Critically, r̂(∞) = wi(∞) + wb(∞) = 1/T , which means that the asymptotic US
prediction is not timescale invariant.
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More generally, r̂(∞) = R̄i/T for the single CS setting. In other words, the asymptotic US
prediction will always report the CS-conditional reinforcement rate. This means that the Rescorla-
Wagner model will be insensitive to any manipulation of CS-US contingency that leaves the CS-
conditional reinforcement rate intact. Several experimental protocols have been used to show that
in fact the CR can be increased or decreased by changes in the background reinforcement rate
while holding the CS-conditional rate constant (see Escobar and Miller, 2004, for a review). For
example, adding unsignaled US deliveries during the intertrial interval (Rescorla, 1968), prior to
conditioning (Randich and LoLordo, 1979; Balsam and Schwartz, 1981; Overmier et al., 1979), or
after (Rescorla, 1973; Overmier et al., 1979) conditioning, all have the effect of decreasing the CR
rate. It can also be increased by lengthening the intertrial interval (i.e., spacing; Terrace et al.,
1975; Gibbon et al., 1977; Sunsay and Bouton, 2008), pre-exposing an animal to the experimental
context (Lattal and Abel, 2001), or extinguishing the context following conditioning (Yin et al.,
1993; Miguez et al., 2011).

All of these observations suggest that temporal contiguity—the degree to which the CS and US
co-occur in time—is inadequate as a principle of Pavlovian responding. On the other hand, it is un-
clear whether temporal contiguity is inadequate as a principle of Pavlovian learning. To appreciate
the difference between these two claims, consider the class of models that generate CRs based on
the relative strength of the CS-US relationship and a comparator, such as the background-US rela-
tionship (Miller and Escobar, 2001). Rate Estimation Theory (RET; reviewed in the next section)
falls into this class, as does the sometimes-competing retrieval model (Stout and Miller, 2007) and
Rescorla’s semi-formal contingency model (Rescorla, 1967). The stimulus relationships are variously
interpreted by these models as rates, associations, or probabilities; we will see that mathematically
these concepts are closely related. Indeed, we have already seen that the Rescorla-Wagner model,
which is quintessentially associative, can be interpreted as estimating the CS-conditional reinforce-
ment rate up to a constant determined by the discretization of time, which is identical to the
CS-conditional reinforcement probability. Regardless of how the stimulus relationships are inter-
preted or how they are learned, the critical feature of these models is their relative response rule,
which stipulates that contingency generates conditioned responding. Intuitively, if the US rate
during the CS matches its rate during the background, then the CS tells the animal nothing new
about the US rate, even if the US reliably occurs in the presence of the CS. If the US rate increases
upon the appearance of the CS, then it is natural to say that the US is contingent on the CS. These
intuitions are captured by the relative response rule.

What is contingency?

What exactly does contingency mean, and are different models talking about the same thing when
they use this term? In modal logic, a proposition is designated as contingent if it is possible but
not necessarily true; there must be at least one “possible world” in which the proposition is true.
We then say that event A is contingent on event B if B occurs in all the possible worlds in which
A occurs. This definition is closely related to counterfactual theories of causation (Lewis, 1973),
according to which B causally depends on A if and only if: (i) if B were to occur, then A would
occur (sufficiency), and (ii) if B were to not occur, then A would not occur (necessity). Pearl (2000)
developed a probabilistic theory of counterfactual dependence for random variables. Probabilistic
counterfactuals have played an important role in modern psychological theories of causal judgment
(Gerstenberg, 2024).

We can connect these ideas to animal learning theory by showing (under some assumptions) that
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the Rescorla-Wagner model estimates a particular probabilistic counterfactual, the probability that
the CS is both necessary and sufficient for producing the US. In particular, if the CS is excitatory (it
never reduces the probability of the US) and there are no hidden confounders (i.e., latent variables
that might cause both the CS and the US),2 then the probability of necessity and sufficiency is
given by:

∆P = P (r̂(∞) = 1|xi = 1)− P (r̂(∞) = 1|xi = 0), (5)

where we have dropped the timestep index for the CS. We use the notation ∆P to draw attention
to the fact that this equation is identical to the definition of contingency used extensively in the
literature on human causal judgment (Jenkins, 1965), and has also been used to analyze Pavlovian
conditioning (Gibbon et al., 1974). Inspection of Eq. 4 reveals that the asymptotic cue weight
learned by the Rescorla-Wagner model in the single cue setting is precisely ∆P = wi(∞)−wb(∞),
a fact also noticed by Chapman and Robbins (1990). This further implies that ∆P is computed by
contrasting the US prediction in the presence and absence of the US—i.e., a relative response rule.
We have thus come full circle, linking the Rescorla-Wagner model to a rigorous causal definition of
contingency that coincides with a particular relative response rule.

It is important to note that ∆P is not timescale invariant: multiplying both T and C by a
constant will not yield the same value of ∆P . There is a related problem (see also Gallistel, 2021):
Recall that using probabilities to define contingency for Pavlovian conditioning requires us to pick
a time discretization, ∆t. This seems rather innocuous, but it isn’t. If ∆t becomes infinitesimally
small, we get the following:

lim
∆t→0

R̄i

T/∆t
− R̄− R̄i

(C − T )/∆t
= 0, (6)

where division by ∆t translate continuous time into a number of discrete timesteps. Thus, the
definition implies that the strength of the CR will be independent of the experimental parameters,
and in fact no conditioned responding should occur at all in this limit. Alternatively, one could
make the discretization coarser, but then one runs the risk of having more than one US occur in a
single time bin, violating the assumption (implicit in the above treatment) that the distributions
are defined over binary events.

A tempting solution to both these problems is to use the ratio between conditional probabilities
rather than the difference. This eliminates the time discretization factor, and it satisfies timescale
invariance. However, recall that wb(∞) is 0 for the delay conditioning protocol. This means that
the ratio is ill-defined.

The nub of the problem, as pointed out repeatedly by Gallistel, is that Pavlovian conditioning
(like many naturalistic learning events) occurs in continuous time. Shoehorning it into discrete-time
probability distributions has disastrous consequences. A better alternative, considered next, is a
continuous-time treatment.

Rate Estimation Theory

The critical conceptual step undertaken by RET (Gallistel, 1990; Gallistel and Gibbon, 2000) is the
replacement of discrete timesteps (n) with continuous time (t). Some events, such as US deliveries

2See Pearl (2000), Chapter 9, for details. Pearl refers to the excitatory requirement as monotonicity and the no
confounding requirement as exogeneity.
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(reinforcements), are well-characterized as point processes: they occur near-instantaneously (and
for our purposes we model them as instantaneous) at particular points in time. Other events,
such as a typical CS, are interval events: they endure for some period of time. RET frames the
computational problem facing an animal as one of predicting the US patterns from the CS patterns,
and using these predictions to decide when to respond. RET makes a set of structured assumptions
about the CS-US relationship which reduce the problem to estimation of CS-conditional US rates.
In the following subsections, we describe the problem and assumptions, an algorithmic solution
proposed by Gallistel (1990) for solving the problem, and how it addresses the empirical issues
raised earlier. This will lead us into a discussion of RET’s limitations—the starting point for a
different algorithmic solution.

Problem statement

We consider an animal that observes a point process of reinforcements, r(t) ∈ {0, 1}, where t indexes
time. We impute to the animal the following generative model:

• The reinforcement process can be additively decomposed into component processes, each of
which is excited by the presence of a stimulus:

r(t) =
∑
i

ri(t), (7)

where i indexes stimuli.

• Each component ri is generated by a Poisson process with intensity

r̄i(t) = E[ri(t)|xi(t)] = λixi(t), (8)

where λi is the reinforcement rate in the presence of stimulus i, and xi(t) = 1 when the
stimulus is present (0 otherwise). This implies that ri(t) = 0 whenever xi(t) = 0.

These two assumptions together imply that r(t) follows a Poisson process with intensity

r̄(t) = E[r(t)|x(t)] =
∑
i

λixi(t). (9)

The animal observes the reinforcement process r(t) but not the underlying components. The
learning problem facing the animal is to estimate the rates for each component {λi}.

An algorithmic solution

Gallistel (1990) devised a clever algorithmic solution to the rate estimation problem. The key
idea is to take advantage of rate additivity (Eq. 9), turning rate estimation into a linear system
identification problem. Specifically, rate additivity implies the following relation:

R̃i

Ni
=
∑
j

λj
Nij

Ni
, (10)

where R̃i =
∫
t xi(t)r(t)dt is the total number of reinforcements observed in the presence of stimulus

i, Ni =
∫
t xi(t)dt is the cumulative record of stimulus i, and Nij =

∫
t xi(t)xj(t)dt is the cumulative
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pairwise record of stimulus i and j (i.e., the total amount of time during which they were presented
together). Note that we have dropped the time index from these variables but in practice we
assume that the animal observes the process for a finite time (in which case the equation is only
approximate).

Gallistel refers to the quantity ui = R̃i/Ni as the “uncorrected” rate estimate. Its expectation
equals the true rate λi only when stimulus i is consistently presented alone (which essentially never
happens since we assume a constant background stimulus). The uncorrected rate estimate needs
to be corrected for the influence of other stimuli on the observed reinforcement process. Since both
the uncorrected rate estimate and the cumulative pairwise records are observable by the animal,
standard linear algebra can be used to estimate the corrected rates:

λ̂ = A−1u, (11)

where λ̂ is a column vector containing the corrected rate estimates, u is a column vector containing
the uncorrected rate estimates, and A is a matrix containing the normalized cumulative pairwise
records, Aij = Nij/Ni.

While mathematically sound, there are several drawbacks to this approach. First, it requires
tracking co-occurrence statistics for all stimuli, a memory demand (space complexity in the jargon
of computer science) that is quadratic in the number of stimuli. Second, it requires tracking these
statistics over a long enough time period that A and u match their expectations. Third, the
algorithm has no way of tracking uncertainty in the estimates after a finite observation period,
which is needed to determine the reliability of future predictions. Finally, the linear system needs
to be solved repeatedly, which has a time complexity that is between quadratic and cubic in the
number of stimuli, depending on the implementation. What’s needed is an algorithm that can
operate in real time, with space and time complexity that doesn’t scale super-linearly with the
number of stimuli. Ideally, the algorithm should also track estimation uncertainty.

The decision rule

To produce conditioned behavior, RET assumes that the rate estimates λ̂ are translated into
conditioned responses based on a comparison of the CS and background rate estimates. Specifically,
Gallistel and Gibbon (2000) proposed that an animal responds to CS i whenever

λ̂i + λ̂b

λ̂b
> β, (12)

where β is a threshold parameter and λb is the reinforcement rate for the background stimulus
(i.e., a constantly present stimulus process, xb(t) = 1 for all t). Later work, starting with Balsam
et al. (2006), adopted an information-theoretic version of this decision rule, where the animal
responds whenever the estimated informativeness of the CS exceeds a threshold (see also Balsam
and Gallistel, 2009). Informativeness is defined (up to a constant) as the mutual information
between the CS and reinforcement processes, assuming both are Poisson-distributed:

Hi = log
λi
λb

= H[ri]−H[ri|xi] + const. (13)

where H[ri] is the unconditional entropy of ri, and H[ri|xi] is the conditional entropy given the
stimulus process. Intuitively, informativeness measures how much the animal’s uncertainty about
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upcoming reinforcement is reduced by observing the CS. Because the true rates are unobserved, the
animal is assumed to use its rate estimates.3 Recently, Gallistel and Latham (2022) have formulated
a related decision criterion that takes into account the animal’s uncertainty about the rates (more
on this later).

This family of relative response rules plays an important role in explaining the empirical phe-
nomena that are so problematic for classical models of associative learning like the Rescorla-Wagner
model, which assume that conditioned responding directly reflects associative strength. As dis-
cussed above, manipulations like contingency degradation and US preexposure reduce conditioned
responding without affecting the CS-US contiguity. These phenomena, which increase λ̂b, are nat-
urally explained by the relative response rule. The relative response rule is also at the heart of how
RET explains timescale invariance.

Explaining timescale invariance

Gallistel and Gibbon (2000) derived timescale invariance with the RET framework as follows.
Recall that in this setting we are considering a single CS i and the background stimulus b, where
the US always follows the CS after a fixed delay. Because of rate additivity, we have λi+λb = T−1,
where T is the CS-US interval. Gallistel and Gibbon further assumed that λb = (RI)−1, where I is
the intertrial interval and R is the number of trials (equivalent to the number of reinforcements).
In other words, the background reinforcement rate is assumed to be the reciprocal of the total
background exposure alone. Note that this assumption is not derived from RET—it is essentially
ad hoc. With this assumption in place, along with the assumption that the rate estimates have
accurately recovered the true stimates (λ̂ = λ), RET predicts that a conditioned response will be
produced when

RI

T
> β, (14)

or equivalently when

R > β
T

I
. (15)

We thus recover the important empirical law that trials (reinforcements) to acquisition (R) is
linearly related to the ratio of interstimulus and intertrial intervals, such that rescaling both intervals
by a constant leaves the acquisition speed unchanged (Gibbon et al., 1977).

While this is an elegant and satisfying result, we need to acknowledge two limitations. First, as
already mentioned, it relies on an ad hoc assumption about the background rate. Second, it does
not take into account the animal’s uncertainty about the rates.4

Summary

This section has reviewed how RET addresses some of the fundamental problems with classical
associative learning theory. First, it avoids the pathologies of discrete time by formulating the

3Note that informativeness (using the rate estimates) is linearly related to the original ratio criterion.
4Gallistel and Latham (2022) develop one method for dealing with this issue, but this relies on other ad hoc

assumptions. In particular, their decision rule is not derived from first principles, but designed based on some
intuitive desiderata.
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learning problem in continuous time. Second, it explains a wide range of challenging findings
by using a relative response rule, which compares the CS-conditional and background rates of
reinforcement. The information-theoretic version of this model provides a formal definition of
temporal contingency.

Several general issues vex RET in its existing forms. First, the algorithm for estimating rates
is computationally impractical. Second, the derivation of timescale invariance involves some ques-
tionable assumptions and does not take into account the animal’s uncertainty about rates. We next
turn to a new approach which addresses these issues.

A new approach to the rate estimation problem

Our goal in this section is to propose a new version of RET which retains its essential idea (that
animals are estimating conditional rates of reinforcement) but replaces its algorithmic machinery. In
doing so, we remedy some of the shortcoming of the theory from a mathematical and computational
perspective. The new approach also allows us to draw a connection between rate estimation and
error-driven learning models. Finally, we show how an information-theoretic decision rule gives rise
to timescale invariance.

Maximum likelihood estimation

Let’s start with a simpler problem: rate estimation when the components are observed. We will
shortly see how to finesse the credit assignment problem into approximately this form.

Suppose at time t the animal has an estimate λ̂i(t). The maximum likelihood estimate of the
rate can be obtained in continuous time using a closed-form, recursive update:

dλ̂i(t)

dt
=
xi(t)[ri(t)− λ̂i(t)]

Ni(t)
, (16)

where Ni(t) =
∫ t
0 xi(τ)dτ is the cumulative record of stimulus i.

Under this update procedure, λ̂i(t) = Ri(t)/Ni(t), where Ri(t) =
∫ t
0 xi(τ)ri(τ)dτ is the cumula-

tive record of reinforcements in the presence of stimulus i. If we only track λ̂i(t) and Ni(t), we can
always recover the cumulative record of reinforcements by the transformation Ri(t) = Ni(t)λ̂i(t).

Estimation when the components are unobserved

Let’s now return to the original credit assignment problem. Because of the additive decomposition
assumption, we can use our rate estimates to obtain an estimate of the components:

ri(t) ≈ δ(t) + λ̂i(t)xi(t), (17)

where

δ(t) = r(t)−
∑
j

λ̂j(t)xj(t) (18)

is the global prediction error. This is a stochastic approximation of the following equality that holds
when λ̂ = λ:

E[ri(t)] = E[δ(t)] + λixi(t), (19)
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where E[δ(t)] = 0. Plugging the approximation into Eq. 16 yields:

dλ̂i(t)

dt
≈ xi(t)[δ(t) + λ̂i(t)xi(t)− λ̂i(t)]

Ni(t)

=
xi(t)δ(t)

Ni(t)
. (20)

This expression is remarkably like the Rescorla-Wagner update, but defined in continuous time, with
learning rate 1/Ni(t). Rather than updating associative strengths, it updates rate estimates. Thus,
the apparently sharp dichotomy between rate estimation and error-driven learning, as emphasized
by Gallistel and Gibbon (2000), is less sharp than previously believed. The critical wedge between
these approaches to conditioned behavior is really the decision process rather than the learning
process, as discussed later.

Note that this algorithm leaves open how the rate estimates are initialized. It turns out that
this ambiguity can be normatively resolved by looking at the problem through a Bayesian lens.

Bayesian estimation

The update rules can, with little modification, accommodate Bayesian estimation. The standard
Bayesian analysis for Poisson processes (see Gelman et al., 2013) uses a Gamma distribution over
rates, which is the conjugate prior (so that the posterior is also a Gamma distribution). Formally,
let λi ∼ Gamma(r0, n0) with “shape” parameter r0 > 0 and and “inverse scale” parameter n0 > 0.
The notation was chosen to make transparent a particular interpretation of these parameters: the
shape parameter can be interpreted as the effective number of prior reinforcements, and the inverse
cale parameter can be interpreted as the effective elapsed time. Accordingly, the rates are initialized
as λ̂i(0) = r0/n0 and n0 is added to the cumulative stimulus record, so that the update is given by:

dλ̂i(t)

dt
=
xi(t)δ(t)

N ′
i(t)

, (21)

where N ′
i(t) = Ni(t) + n0. We will refer to this learning rule as online Bayesian RET.

The rate estimates can be understood as the posterior means (or more precisely an approxi-
mation of the posterior means, when using the results from the preceding section). The Bayesian
estimates approximate maximum likelihood estimates in the limit r0 → 0, n0 → 0. Importantly,
the Bayesian setup resolves the ambiguity about initial conditions left open by maximum likelihood
estimation.

One consequence of Bayesian estimation is sensitivity to sample size (or duration). Intuitively,
an animal should be more confident if it has observed the process for longer. In contrast, maximum
likelihood estimation will yield the same rate estimates for the same empirical rates Ri(t)/Ni(t)
regardless of how long the process has been observed. To see this, we represent the Bayesian
estimate in the following form:

λ̂i(t) =
Ri(t) + r0
N ′

i(t)
= ω

Ri(t)

Ni(t)
+ (1− ω)

r0
n0
, (22)

where

ω =
Ni(t)

N ′
i(t)

(23)
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is the weight on the empirical rates. Because the posterior mean rate is a convex combination of the
empirical and prior rates, weighted inversely by sample size, it will be pulled towards the prior rate
when the sample size is small. At the other extreme, it will converge to the maximum likelihood
estimate when the sample size is large. Thus, the point estimate will reflect uncertainty about the
rates even though it does not explicitly represent uncertainty.

It is also possible to obtain an explicit representation of uncertainty using only the representa-
tions that we have already posited. The posterior variance is given by:

Ri(t) + r0
[Ni(t) + n0]2

=
λ̂i(t)

N ′
i(t)

. (24)

However, we will not make use of this quantity in what follows.

Information-theoretic decision rule

To map rate estimates to conditioned responses, we develop an information-theoretic decision rule
similar to the one proposed by Balsam et al. (2006). Importantly, this new rule takes into account
rate uncertainty.

Given the Gamma posterior over the rates, we can analytically obtain the posterior mean Ĥi(t)
and variance Vi(t) of the informativeness:

Ĥi(t) = ψ(Ni(t)λ̂i(t))− ψ(tλ̂b(t))− logNi(t) + log t (25)

Vi(t) = ψ1(Ni(t)λ̂i(t)) + ψ1(tλ̂b(t)), (26)

where ψ(·) is the digamma function, and ψ1(·) is the trigamma function. Note that we have assumed
here statistical independence between the CS and background rates.

One way to define a decision rule is to initiate responding when the animal is confident that
informativeness has exceeded a criterion value, β. By moment-matching the posterior over Hi to a
Normal distribution, we can approximate the posterior probability that Hi > β, what we will refer
to as the exceedance probability, denoted by µ(t):

µ(t) ≈ Φ

(
Ĥi(t)− β√

Vi(t)

)
, (27)

where Φ(·) is the cumulative distribution function of the standard Normal distribution. We hy-
pothesize that the conditiond response rate tracks the exceedance probability. While this changes
smoothly with training (see Harris, 2022), it can also be highly non-linear, reflecting the relatively
sharp increases in responding characteristically elicited by conditioning protocols (Gallistel et al.,
2004). In particular, the rate of change in the learning curve is maximal at Ĥi(t) = β.

With this setup, we can analyze the trials to acquisition, a measure of (inverse) stimulus as-
sociability (Balsam and Gallistel, 2009). We will define trials to acquisition as the number of
reinforcements R(t) at which Ĥi(t) = β, the major inflection point in the learning curve.

Using the approximation ψ(x) ≈ log x,5 we have:

Ĥi(t) ≈ log
λ̂i(t)

λ̂b(t)
= log

R̂i(t)t

R̂b(t)Ni(t)
. (28)

5The digamma function behaves asymptotically as ψ(x) ≈ log x − 1
2x

. For x > 3, the second term contributes
negligibly, and the logarithmic approximation is reasonably accurate.
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Let C = t/R(t) denote the average cycle time between reinforcements and T = Ni(t)/R(t) denote
the average CS-US delay; we then have the relationship C/T = t/Ni. Plugging this into Eq. 28:

Ĥi(t) ≈ log
R̂i(t)

R̂b(t)
+ log

C

T
. (29)

We now fix t at the time t∗ when Ĥi(t
∗) = β and drop the time index. Solving for reinforcements

to acquisitions, R, yields:

R ≈ eβR̂b

(
T

C
+ 1

)
= eβR̂b

T

I
. (30)

This expression approximately recapitulates the timescale invariance of conditioning, R ∝ T/I,
provided R̂b is constant as a function of T/I. Since R̂b = λ̂b(t

∗)t∗, it suffices that λ̂b(t
∗) ∝ 1/t∗.

This condition is satisfied if early during training (when there is still appreciable uncertainty about
the CS and background rates) a fixed number of reinforcements are attributed to the background,
after which the CS rate is high enough to take credit for all subsequent reinforcements. Note,
however, that this is an essentially ad hoc assumption similar to the one made by Gallistel and
Gibbon (2000). In the next section, we show that in practice this model produces near-perfect
timescale invariance.

Simulations

Because the theory relies on several approximations, it is important that we validate it using sim-
ulations. Code for reproducing these simulations is available at https://github.com/sjgershm/
rate_estimation.

First, we show that the approximate learning scheme correctly estimates rates when they are
generated from a stimulus-dependent superposition of Poisson processes, as assumed by the theory.
Figure 1 plots the estimation error over learning for the case where background rate is 0.5, the CS
rate is 2, the interstimulus interval is 2, and the intertrial interval is 5. The online Bayesian RET
algorithm (with r0 = 1 and n0 = 1) accurately learns both rates in a realistic number of trials; the
learning curve begins to asymptote after approximately 75 trials.

Next, we verified that the model produces timescale invariance in a standard Pavlovian delay
conditioning protocol. Because conditioned responding is determined by comparison of estimated
informativeness with a fixed threshold, it suffices to show that estimated informativeness is constant
across variations in interstimulus and intertrial intervals, as long as their ratio is held fixed. As
shown in Figure 2, the posterior mean informativeness is indeed almost constant as a function of
the interstimulus interval when the ratio is held fixed. Different points on the curve correspond
to different scalar multiples of the ratio. The two curves show two different ratios, with greater
estimated informativeness when the ratio is larger (i.e., when the intertrial interval is large relative
to the interstimulus interval).

Conclusion

All theories of learning make claims about both learning (what information is extracted from
sensory inputs for storage in memory) and performance (how learned information is mapped to
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behavior). Classical associative theories, exemplified by the Rescorla-Wagner model, claim that
learning is association formation and performance (conditioned responding in a Pavlovian context)
is a read-out of associative strength.6 Modern representational theories, exemplified by RET, claim
that learning is rate estimation and performance is a read-out of contingency between stimuli. It
would appear that there is little common ground between these theories, but that appearance is
misleading. This paper has shown that a learning algorithm closely resembling the Rescorla-Wagner
model can be used to estimate rates—a computationally practical alternative to the algorithmic
solution proposed by Gallistel (1990).

The critical difference between the theories concerns performance. As recognized by a number
of different theoretical traditions, not all of them representational in the manner of RET (see for
example Miller and Matzel, 1988; Bouton, 1993; Stout and Miller, 2007), conditioned responding
is fundamentally comparative in nature, influenced by CS and US properties that go beyond their
direct association. RET formalizes this idea by positing that conditioned responses are generated
when the stimulus-conditional rate estimate exceeds the background rate estimate by some thresh-
old. Another contribution of this paper is to place this proposal on firmer theoretical footing,
showing how a fully probabilistic approach to rate estimation, in combination with an information-
theoretic decision rule, can (approximately) yield timescale invariance, a fundamental empirical law
of Pavlovian delay conditioning.

One reason why contiguity-based theories like the Rescorla-Wagner model (and its descendants)
have had such staying power is that they fit snugly with modern neurobiological theories of learning
based on Hebbian synaptic plasticity. From Gallistel’s viewpoint, this is a fundamental error,
because both of these theories are irredeemably flawed (Gallistel and Matzel, 2013). While there
are many reasons to endorse such a viewpoint (see also Gershman, 2023), we shouldn’t throw the
baby out with the bathwater. The fact that rate estimation can be reduced to a form of error-driven
learning suggests that it could be implemented with the machinery thought to exist in the dopamine
system. Considerable evidence supports the hypothesis that dopamine reports reward prediction
errors (Montague et al., 1996; Glimcher, 2011; Watabe-Uchida et al., 2017), though this hypothesis
has had its own share of controversy (Gershman et al., 2024). The important takeway is that we
can begin to build bridges between representational and algorithmic theories of learning—without
invoking the concept of association.

Acknowledgments

Randy Gallistel provided helpful discussion of the ideas in this paper, and Gautam Rao provided
feedback on an earlier draft. The work was supported by the Air Force Office of Scientific Research
grant FA9550-20-1-0413.

References

Balsam, P. and Schwartz, A. (1981). Rapid contextual conditioning in autoshaping. Journal of
Experimental psychology. Animal Behavior Processes, 7:382–393.

Balsam, P. D., Fairhurst, S., and Gallistel, C. R. (2006). Pavlovian contingencies and temporal
information. Journal of Experimental psychology. Animal Behavior Processes, 32:284–294.

6See Honey et al. (2020) for an example of an associative theory that makes more complex assumptions about the
mapping from associations to behavior.

15



Balsam, P. D. and Gallistel, C. R. (2009). Temporal maps and informativeness in associative
learning. Trends in Neurosciences, 32:73–78.

Bouton, M. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian
learning. Psychological Bulletin, 114:80–99.

Chapman, G. B. and Robbins, S. J. (1990). Cue interaction in human contingency judgment.
Memory & Cognition, 18:537–545.

Danks, D. (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology,
47:109–121.

Escobar, M. and Miller, R. R. (2004). A review of the empirical laws of basic learning in Pavlovian
conditioning. International Journal of Comparative Psychology, 17:279–303.

Gallistel, C. (2021). Robert Rescorla: Time, information and contingency. Revista de Historia de
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