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Abstract 
  
How does the genome encode the form of the organism? What is the nature of this 
genomic code? Common metaphors, such as a “blueprint” or “program”, fail to capture 
the complex, indirect, and evolutionarily dynamic relationship between the genome and 
organismal form, or the constructive, interactive processes that produce it. Such 
metaphors are also not readily formalised, either to treat empirical data or to simulate 
genomic encoding of form in silico. Here, we propose a new analogy, inspired by recent 
work in machine learning and neuroscience: that the genome encodes a generative 
model of the organism. In this scheme, by analogy with variational autoencoders, the 
genome does not encode either organismal form or developmental processes directly, 
but comprises a compressed space of “latent variables”. These latent variables are the 
DNA sequences that specify the biochemical properties of encoded proteins and the 
relative affinities between trans-acting regulatory factors and their target sequence 
elements. Collectively, these comprise a connectionist network, with weights that get 
encoded by the learning algorithm of evolution and decoded through the processes of 
development. The latent variables collectively shape an energy landscape that 
constrains the self-organising processes of development so as to reliably produce a 
new individual of a certain type, providing a direct analogy to Waddington’s famous 
epigenetic landscape. The generative model analogy accounts for the complex, 
distributed genetic architecture of most traits and the emergent robustness and 
evolvability of developmental processes. It also provides a new way to explain the 
independent selectability of specific traits, drawing on the idea of multiplexed 
disentangled representations observed in artificial and neural systems. Finally, it offers 
a conception that lends itself to formalisation, both of empirical data from systems 
biology and for simulation of artificial life in silico. 
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Introduction: The genomic code 
  
The fundamental phenomenon of genetics is that like begets like. Cats have kittens and 
dogs have puppies. This is despite, in each case, new individuals starting out as a 
single, undifferentiated cell – the fertilised egg, or zygote. The complex form of the 
parents is thus not transmitted to their offspring – instead, it must be reconstructed in 
each new individual. Clearly then, the zygotes of cats and dogs must contain some 
substance – the genetic material – that is inherited from the parents, which somehow 
directs the development of the growing organism so as to produce a new token of the 
feline or canine type. The question is: how? What is the nature of this genomic encoding 
of form? 
  
Over the years, various metaphors have been used to conceptualise the nature of what 
we will call the genomic code – i.e., how the genome specifies the form of an organism 
(Keller 2020; Nijhout 1990). These include, among others, a codescript (Schrödinger 
1944), blueprint (Plomin 2018), program (Keller 1999; Peluffo 2015), recipe (Mitchell 
2018), or resource that the developing organism can draw on (Oyama 2000). One of the 
most enduring of these, especially common in popular science treatments, is the idea 
that the genome constitutes a “blueprint” of the organism (e.g., Plomin 2018). This 
metaphor conveys the idea of a detailed but miniaturised plan that can in some way be 
referred to, in order to direct the development or construction of a pre-specified final 
product. 
  
However, the metaphor quickly falls down in several ways (Pigliucci 2010). First, an 
architectural or engineering blueprint is isomorphic with the desired product – that is, 
distinct parts of the blueprint correspond directly and specifically to distinct parts of the 
product. In this way, the blueprint concept is almost preformationist, with the genome 
containing a direct mapping of the final product. Second, a blueprint does not usually 
contain instructions on how to build the object in question – it only has information on 
what it should look like when completed. This clearly leaves a major question 
unanswered – how the processes of development are specified so as to yield the 
desired outcome. And finally, a blueprint typically specifies an object in such detail as to 
be effectively deterministic, leaving little room for the kind of variability in developmental 
trajectories and outcomes that is typically observed, even in genetically identical 
organisms raised in highly controlled, effectively identical environments (Vogt 2015). 
  
An alternative metaphor is that of a “program” (Keller 1999; Peluffo 2015). In this view, 
the genome does not contain endpoint information in the way that a blueprint does. 
Instead, it encodes algorithmic information – a set of instructions or steps that will 
reliably lead to the production of some outcome. This analogy was first introduced in 
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1961, separately, by evolutionary biologist Ernst Mayr (Mayr 1961) and by geneticists 
Francois Jacob and Jacques Monod (Jacob and Monod 1961). 
  
For Mayr, it encapsulated and legitimised the teleological idea of purpose, or end-
directedness, as a fundamental principle in biology. A zygote undergoes a series of 
developmental steps towards the end of producing a new individual of the species, and 
the information specifying those steps must somehow be encoded in the genome. On a 
mechanistic level, Jacob and Monod drew on their work on gene regulation in bacteria 
to infer that differential regulation of gene expression might also underlie the 
specification of the diverse cell types observed in multicellular organisms. 
  
The “program” concept seems to better capture the emergent nature of the relationship 
between genotype and phenotype. In particular, it encompasses the key idea that 
whatever potentiality is encoded in the genome, it can only be realised through the 
processes of development. Those developmental processes can be described as a 
series of steps, occurring in a stereotyped order, directed towards some end. This 
corresponds well with the traditional meaning of the word “program” as: “a set of related 
measures or activities with a particular long-term aim” (Oxford Languages). 
  
However, it is important to distinguish between the observed “developmental program” 
and the supposed underlying “genetic program” (Keller 1999). The former term simply 
describes the phenomenon that needs explaining – the observable steps of 
embryogenesis leading to a species-typical outcome. The latter term purports to provide 
the necessary explanation – the means by which the developmental program is 
encoded. 
  
But the word “program” also carries some unsupported connotations. Regarding the 
means by which the steps of development are encoded, “program” is in modern times 
also defined as: “a series of coded software instructions to control the operation of a 
computer or other machine” (Oxford Languages). The usage of the term “genetic 
program” may thus seem to imply a regular, explicit, and interpretable set of 
instructions, logically laid out and executed in series. As with a blueprint, it can be taken 
as implying a kind of isomorphism, this time between elements of the genome and 
elements of the developmental program. Moreover, it again suggests a kind of 
algorithmic determinism, with all the details somehow spelled out in advance. Neither of 
these properties is observed. 
  
A variation on the “program” idea is that of a “recipe”, as used in baking, for example. 
Here, you have some set of ingredients – material stuff that must be brought together – 
as well as a set of instructions for how to do that. These preparatory steps themselves 
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are somewhat like a program, but once the baking starts, the way the system develops 
is determined by the chemistry and physics at play. This naturally leads to more 
variability in the precise outcome of development. No matter how detailed your recipe, 
you can’t bake the same cake twice (Mitchell 2018). The outcome is not specified in full 
detail, nor are the processes themselves. The recipe doesn’t need to encode all the 
relevant chemistry and physics – those are just given. Instead, the conditions are just 
set in such a way that the processes tend to happen in a robust and reproducible 
fashion so as to reliably produce an acceptable outcome. For an organism, this would 
mean landing within a viable phenotypic range. 
  
The “recipe” notion thus avoids some of the deterministic, rigid connotations of a 
“program”. It feels more organic. In particular, it appeals more to notions of self-
organisation, which offer a different perspective on where the information resides that 
governs the emergence of the ultimate form of the developing organism. 
  
This jibes with some alternative perspectives, notably from Developmental Systems 
Theory and aligned traditions, which view the genome not as a privileged store of 
information that somehow actively directs the development of the organism, but as a 
“resource” that the developing organism can draw on (Oyama 2000). In this scenario, 
the genome does not have to encode the specifics of all the developmental processes 
in a detailed program. It just has to set the conditions in a certain way and let the self-
organising nature of the cellular systems do most of the work. The sequence of the 
genome can constrain the direction of self-organisation, but a lot of the informational 
heavy lifting is offloaded to the developing system itself. This view is more ecumenical 
and avoids the sense of the genome actively driving development. However, it remains 
decidedly vague. 
  
Indeed, none of these metaphors provides the means to formalise or operationalise the 
role of the genome in the encoding of organismal forms. They are too vague to offer any 
kind of theoretical foundation that could help us model empirically observed 
developmental processes, including their evolution, or simulate such processes in 
artificial systems. 
  
Moreover, the current metaphors fail to provide any insights on these crucial questions: 
  

- How does information get encoded in the genome and what is this information 
about? 

- What is the “data format” of this information in the genome? 
- How does such information get decoded through the processes of development? 
- How does genotypic variation relate to phenotypic variation? 
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- How does the genetic architecture of various traits arise? 
- How do the underlying encodings evolve through time? 

  
Here we propose a new model inspired by work in artificial intelligence and 
neuroscience: the genome as a generative model of the organism. This concept seems 
to more aptly capture the relationships between genotypes and phenotypes, provides at 
least broad answers to the questions above, and is readily formalisable. 
  
 
The generative model metaphor 
  
The problem that the genome has to solve is to somehow embody a set of parameters 
that will lead to the development of a new organism of the right sort from a fertilised 
egg. In abstract terms, this is similar to the problem solved in machine learning by 
“autoencoders”. These are neural networks that are trained to produce new instances of 
text, images, or other data, which are similar, but not necessarily identical, to those from 
a training distribution. If, for example, the autoencoder is trained on images of horses, 
then it can output novel images that have the typical characteristics of horses. 
  
This is achieved using a particular architecture of layers of artificial “neurons”. This 
architecture comprises roughly two halves, firstly an input side – the encoder – which 
parses input data through multiple layers, with progressively fewer units per layer, until it 
reaches a central layer with the fewest units. This bottleneck forces a compression of 
the information in the input data into a lower-dimensional “representation” (Bengio et al. 
2013; Hinton 2007). The output side – the decoder – then reverses this process, 
decompressing the information in such a way as to generate a new token of the relevant 
type. The system is trained, in a self-supervised way, to minimise a loss function, which 
is the distance of some mathematical characterisation of the generated object from the 
objects in the training distribution.  
 
The crucial element in this process is the compression into a low-dimensional 
representation. This forces the system to learn the abstract statistical regularities that 
define the type of object in question and to encode these abstract features in a space 
with limited information capacity, in a way that can then be decoded (Bengio et al. 2013; 
Shwartz Ziv and LeCun 2024). At the same time, the decoder has to learn the right 
algorithms to decompress this information to generate a new token. In many cases, this 
leads to an encoding in the compressed layer of “latent variables” that have little direct 
relationship (i.e., no linear or independent mapping) to the features of the objects on 
which the autoencoder has been trained. The system thus does not merely learn a low-
dimensional description of the features of the objects. Rather, it comes to instantiate a 
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generative model – an encoding of latent variables and the means of decoding them to 
generate a new instance of the trained objects (Figure 1). 
 

 
 
Figure 1. An analogy with variational autoencoders. VAEs learn a compressed representation of their 
training data, leading to a generative model encoded in latent variable space, which can be decoded to 
produce novel tokens of a learned type. By analogy, evolution acts as an encoder, leading to a 
compressed representation in the genome (a generative model of the organism), which can be decoded 
through the processes of development to produce a new individual of a given species.  
 
This has obvious possible parallels to how information about the form of the organism is 
encoded in the genome. First, the detailed three-dimensional structure of an adult 
animal cannot simply be replicated. Instead, all that information is massively 
compressed into just a single cell, with its single copy of the genetic material, from 
which the pattern is re-produced. In this process, the genome comprises an information 
bottleneck – it does not contain enough information, mathematically speaking, to specify 
the number and position and type of every cell of the organism (Koulakov et al. 2021; 
Oyama 2000). 
  
The genome does not contain direct endpoint information at all, in fact. In a sense, it 
contains algorithmic information (Kolmogorov 1968) that governs how developmental 
processes proceed (Hiesinger 2022; Nusslein-Volhard 2006). But even this is not 
encoded directly or discretely, with distinct parts of the genome specifying instructions 
for distinct developmental processes. Rather, this encoding is indirect, distributed, and 
non-linear – the latent variables in the genome collectively constrain biochemical 
interactions such that certain cellular and developmental processes tend to occur in 
certain ways (Alberch 1991; Goodwin 1985; Jaeger and Monk 2014; Pigliucci 2010). 
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An additional important element of some autoencoders – called variational 
autoencoders – is that they do not encode latent variables as specific values but rather 
as probability distributions (Kingma and Welling 2013; 2019). The decoder is trained to 
produce a sensible output by sampling from these distributions, thus necessarily 
producing new tokens that vary idiosyncratically in their details, while still conforming to 
the abstract type (such as a “horse”). There is a clear correspondence to natural 
systems, which must buffer noisy molecular processes or genetic variation so as to still 
produce viable and potentially reproductively fit offspring (Eldar and Elowitz, 2010; Vogt 
2015). This property relates to robustness and evolvability (Vogt 2015; Wagner 2013), 
as we discuss below. 
  
In the rest of this paper, we explore the elements and implications of this model. 
  
 
What are the latent variables in the genome? 
  
The most obvious thing that is encoded in the genome is the sequence of proteins. The 
deciphering in the 1960s of “the genetic code” that relates the sequences of DNA bases 
to the sequences of amino acids in the corresponding proteins was a scientific triumph 
that set the stage for the rise of molecular biology (Nirenberg et al. 1963). This code is 
linear and direct and means that each gene (i.e., each protein-coding “transcription 
unit”, in molecular biology terms) is, literally, a kind of blueprint for a specific protein. 
However, the deciphering of the genetic code for proteins did not by itself reveal how 
the genome as a whole codes for the form of an organism. The sequences of the 
proteins themselves are only part of the picture. 
  
Equally important (or perhaps more so) are the sequences that encode how those 
proteins are expressed. This “code” is far less regular and discrete. It is not just a linear 
text that can be directly translated with fixed, universal rules into another linear text – it 
is not a cipher at all, in fact. It is, rather, part of a dynamic control system with 
combinatorial, contextual dynamics that allows cells to regulate their own biochemistry 
under many different conditions. In multicellular organisms, this includes making 
different cell types in different parts of the organism, thus constraining the processes of 
development and morphogenesis that shape its ultimate form. There are thus several 
questions to ask: (i) how is the regulation of expression of specific genes encoded?; (ii) 
how is this coordinated across the genome in each cell?; and (iii) how do interactions 
between the resultant cell types ultimately lead to the emergence of species-typical 
forms? 
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The genome must encode (or constrain) all these processes and their outcomes, but 
with only the sequence of DNA nucleotides as the information-bearing elements. DNA is 
an extraordinarily chemically inert molecule, which is why it is so stable (making it an 
ideal medium for information storage). It does play a part in chemical reactions as a 
catalyst, however – specifically as an adsorption catalyst. That is, by bringing together 
other molecules, it encourages them to interact in ways that would otherwise be highly 
unlikely. Indeed, the only thing directly encoded in DNA sequences is differential affinity 
– for proteins, RNA molecules, or DNA or RNA nucleotides. 
  
It is this differential affinity that directs regulation of gene expression. It is instantiated in 
the sequences of the regulatory RNAs and proteins (transcription factors, chromatin 
proteins, splicing factors, translational regulators, and so on) and the sequences of 
various regulatory elements they bind to, either in the DNA or in the encoded RNA. 
Collectively, the affinities of these interactions broadly determine which genes are 
expressed, to what levels, and in which parts of the developing embryo, thus driving 
patterning and coordinating cellular differentiation.    
  
The latent variables are thus, at the finest level of detail, the DNA nucleotides 
themselves, which, over sequences of varying length: (i) encode RNA and protein 
molecules that do the work in the cellular economy, including the regulation of gene 
expression; and (ii) comprise binding sites for these regulatory factors. With respect to 
the form of the organism, these variables are “latent” because the relationship of the 
genomic sequence to the form of the organism is distributed, non-linear, and extremely 
indirect. 
  
  
The decoder: generative models of growth and development 
  
In the analogy with artificial systems such as variational autoencoders, the cells of the 
developing embryo play the part of the decoder – the part of the machine learning 
model which gradually decompresses the latent vector into the full image. Deep neural 
nets are designed with multiple layers, traditionally arranged in a hierarchical fashion 
with connectivity existing only between adjacent layers. Progressive processing of data 
through these layers in the encoder is what enables abstraction of general features and 
compression into a latent variable space. In the decoder, the sequential progression 
from the compressed latent space to the resultant image occurs in the opposite 
direction via sequential layers of higher-and-higher-dimension.  
 
One crucial point of difference between machine learning models that generate new 
tokens of some type and the processes of multicellular development that generate new 
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individual organisms, is that the latter have to build their own decoders along the way. 
Not just once, but over and over again. And as they do, they also change the variables 
in the generative model itself.  
  
To begin with, the chromosomes of the zygote are not just naked DNA, but packaged 
into chromatin, making some protein binding sites accessible and others inaccessible. 
This changes the landscape of latent variables. In addition, the zygote inherits a specific 
complement of nuclear, cytoplasmic, and membrane proteins – the elements that 
actively do the decoding. The initial conditions of the generative model are thus set by 
these factors inherited by the cell. (It is important to note, however, that the chromatin 
modifications on the egg and sperm genomes and the cellular proteins in the egg are 
themselves directed by the genomic sequence in the prior generation). 
  
The same thing happens through cell divisions, with changes to the initial conditions 
and the configuration of the decoder each time new cell types are generated. This 
determines which elements of the generative model will be active in any newly 
generated cell, allowing the decoder to generate the appropriate cell type. The genome 
thus encodes a multiplicity of models and matching decoders, which are brought into 
play as embryonic development proceeds. The temporal sequence of cell types in 
development may thus provide an analogue to structural layers in deep neural nets, 
progressively processing the data in the latent variable space, with each step 
determining the nature of the data that are passed to the next one. 
   
The different state spaces that define various cell types are thus encoded in a 
multiplexed fashion. At least part of the reason they don’t interfere with each other is 
that they are read out by different proteins in different cell types at different times, 
induced by new signals along the way that are interpreted by new cell states. The 
program thus builds the new interpreters along the way, as well as adding epigenetic 
marks to the genome itself. The generative model instantiates directionality to these 
transitions (Wang et al. 2010), with each transition revealing latent states that were not 
reachable before, and, in turn, creating new transition probabilities (Jaeger and Monk, 
2014; Moris et al. 2016; Sáez et al. 2020).  
 
All this cellular differentiation also has to be spatially and temporally coordinated on the 
scale of the whole organism (Gorfinkiel and Martinez Arias 2021). This means that the 
generative model instantiated in the genome must also constrain the developing embryo 
so as to direct the processes of proliferation, differentiation, cell signaling, and 
morphogenetic movements that collectively lead to the emergence of the three-
dimensional form of the organism. These processes rely on all kinds of physical 
parameters and self-organising dynamics that are not encoded in the genome, and that 
don’t have to be (Alberch 1991; Collinet and Lecuit 2021; Goodwin 1985; Gorfinkiel and 
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Martinez Arias 2021; Newman et al. 2006; Newman 2022). This starts with the physics 
driving protein folding, but also includes the biophysics of the cytoskeleton, of adhesive 
forces, of membrane tension, and so on, which collectively shape the morphology of 
cells and the morphogenesis of tissues. The genome can take all the relevant physics 
and chemistry as given. All it needs to encode are sets of constraints that channel these 
processes along certain trajectories, locally, through cell divisions, and globally, in the 
emergent morphogenesis of the whole developing organism. 
  
  
Gene regulatory networks, attractor states, and energy landscapes 
  
The ways in which the latent variables in the genomic sequence can constrain and 
direct development have been modelled and conceptualised in various ways.  First, the 
collective regulatory interactions encoded in the genome can be depicted as gene 
regulatory networks – graphs that capture the positive and negative interactions 
between various regulatory factors and from regulatory factors to their effector targets 
(Ben-Tabou de-Leon and Davidson 2006; Davidson and Erwin 2006).   
The regulatory elements of any given gene can be thought of as performing logical 
operations (AND, OR, NOT, etc.) on their “inputs” – i.e., the pattern of transcriptional 
regulators present and active in the cell (Alon 2007; Istrail et al 2007). The activity of 
these regulators is often sensitive to some kind of signal or state. The classic example 
is the lac operon in E. coli, which is transcribed only when glucose is absent (such that 
the CAP transcriptional activator is active and bound to the DNA) AND lactose is 
present (such that the lac repressor is inactivated and not bound to the DNA) (Jacob 
and Monod 1961; Mayr 1961). 
  
However, the lac operon is unusual in that the genes comprising it are either not 
transcribed at all or transcribed at very high levels – i.e., their activation state is 
effectively binary: ON or OFF. Most gene regulation is more graded, from LOW to HIGH 
(not digital, but analog). In addition, transcription is inherently probabilistic and 
fluctuating – expression levels do not reflect a smooth rate of mRNA production but 
rather the probability of the gene being transcribed at any moment (Eldar and Elowitz 
2010; Raj and van Oudenaarden 2008). Genes thus do not act like clean, isolated 
Boolean operators but rather as continuous, noisy, and dynamic elements in a 
connectionist network  (Alon 2007; Kauffman, 1969; 1993). 
 
Once such a network gets large enough it becomes too complicated to model as a set 
of interconnected logic gates that determine the static state of the system. Indeed, in 
development, specific proteins are “re-used” in different parts of the embryo in 
combinatorial and highly context-dependent ways, to the extent that it becomes 
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impossible to associate specific factors with specific cell types or tissues in any kind of 
causally isolated way. Instead, the entire genomic network can be thought of as an 
interlocking dynamical system that can tend toward a variety of possible stable attractor 
states, but that also will tend to follow stereotyped trajectories through state space over 
time, given certain conditions (Figure 2) (Alon 2007; Huang e al. 2005; Huang 2012; 
Jaeger and Monk 2014; Kang and Li 2021; Kauffman 1993). A dynamical model also 
captures the fact that the regulatory interactions at play do not all occur instantaneously. 
They play out through time, often at different rates. 
 

 
 
Figure 2. Gene regulatory networks. Panel (a) shows the hierarchical arrangement of gene regulation, 
starting with cis-regulatory DNA elements of a gene (Gene A), comprising binding sites for Gene A’s own 
product, Protein A, as well as the product of Gene B, Protein B. Most genes contain many such regulatory 
elements. Gene A encodes a regulatory protein, which regulates its own transcription as well as several 
other targets. The gene regulatory network can be depicted as a series of motifs and subcircuits carrying 
out interconnected logical operations, ultimately leading to some program of cellular differentiation. Panel 
(b) shows an alternate view of a gene regulatory network, depicted as a weighted graph or connectionist 
network. Panel (c) shows how such a network embodies a dynamical system that can generate a 
landscape of attractor states. (Panel (a) reproduced with permission from Ben-Tabou de-Leon and 
Davidson, 2006. Panels b and c modified from Kang and Li, 2021) 
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In artificial systems, these kinds of complex interactions are modelled as generating an 
“energy landscape” – a three-dimensional contoured surface, with peaks and valleys, 
with different points on this landscape representing possible states of the system 
(LeCun et al., 2006; Teh et al. 2003). At any time, the system will tend towards states 
with the lowest “energy”, with the configuration of the landscape funnelling the system 
away from unstable peaks and towards one or other of the stable valleys (i.e., the 
attractor states). The benefit of this depiction is that it incorporates progress of the 
system through time – not just that various states are possible, but that the system will 
tend to pass from one such state to another along constrained trajectories. 
  
Conrad Waddington published just such a visualisation – his famous “epigenetic 
landscape” – in 1957, to describe how cellular differentiation works (Waddington, 1957). 
He depicted the cell as a ball, rolling down the landscape as development proceeds, 
being channelled into one of several possible valleys, representing different cell types. 
One important feature of this scheme is that it is probabilistic. The depth of the various 
valleys represented the likelihood of a given cell adopting a given fate, but at the 
entrances to these valleys, when the landscape was still pretty flat, small amounts of 
noise might shift the ball one way or the other. The actual outcome for any individual 
cell might thus not be fully determined, though the statistical outcome over many such 
cells would be set by the relative probabilities. 
  
While the picture of the ball rolling down this landscape is well known, the picture of 
what is going on beneath the landscape is less so. In Waddington’s scheme, the 
landscape is like a huge sheet of canvas, which is pulled down in certain positions by a 
system of pegs and guy ropes. Each peg represents a gene, and their collective 
influence – with many genes pulling on the canvas at any one position and individual 
genes pulling on multiple points – is what generates the shape of the landscape (Figure 
3). 
 
The pegs and ropes underlying Waddington’s landscape would comprise the latent 
variables of the model. Crucially, their relationship to the output is combinatorial, non-
linear, non-isomorphic, and indirect. In addition, the system is not forced into particular 
states – it is merely configured in a way that constrains its self-organising processes. In 
a sense, the genes define where the system can’t go.  
 
This visual metaphor is useful as a kind of cartoon of how we can think of what is 
happening during cellular differentiation and development. But the analogy with 
generative models suggests that it may actually be formally correct. Generative models 
mathematically create just such energy landscapes, with the decoding algorithms 
constraining the outputs to positions in feature space with the lowest energy (and thus 
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the lowest “reconstruction error” in the case of autoencoders) (Figure 3) (LeCun et al., 
2006; Teh et al. 2003). Importantly, these landscapes are typically smooth and 
continuous mathematical surfaces, such that objects near each other in feature space 
are most similar, with features varying smoothly across the landscape. This has 
implications for how traits may smoothly evolve by altering the shape of the decoding 
landscape. 

 

 
 
Figure 3. Energy landscapes. Panel (a) shows Waddington’s epigenetic landscape, depicting the state 
of a cell through development as a ball rolling down a landscape, with the valleys representing eventual 
possible cell fates. One key aspect of this scheme is that it is probabilistic and statistical. The landscape 
is shaped by the collective actions of many genes (depicted in (b) as pegs and guy ropes pulling down on 
a canvas), but the actual outcome of any “run” for an individual cell will reflect the playing out of noisy 
processes over this landscape. Panel (c) represents a latent space and resultant energy landscape, 
generated from a compressed representation in a connectionist network (d). (Panels (a) and (b) 
reproduced, with permission, from Waddington, 1957. Panel (c) reproduced, with permission, from Kang 
and Li, 2021). 
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Note that we are not talking here about traditional fitness landscapes used in 
evolutionary biology (Kauffman 1993; Wright 1932), though the two ideas are related. 
The energy landscapes created by generative models depict the likeliest states 
generated by the constraint regimes of the model, whether defined in terms of cell types 
during differentiation, or eventual organismal phenotypes. The landscapes used in 
evolutionary biology depict fitness peaks - i.e., how well suited different phenotypes are 
to conditions (Svensson and Calsbeek 2012). The shapes of both the phenotype 
generation landscape and the fitness landscape influence how evolution acts on the 
generative model itself - i.e., how it exerts selection over genetic variants.  
 
  
The encoder: evolution as a learning process 
  
Collectively, the latent variables in the genome can be thought of as constituting a 
connectionist network, with individual genes as nodes and regulatory interactions as 
edges (which can be activating or repressing), with weights determined by the relative 
affinities. An important question, then, is how these weights get set. 
  
In the analogy to deep learning systems, evolution plays the role of learning or training. 
The idea that evolution is effectively a learning algorithm is not new, of course (Kouvaris 
et al. 2017; Sáez et al. 2022; Szilágyi et al. 2020; Watson et al. 2014; Watson and 
Szathmáry 2016), but recent comparisons with the various algorithms of deep learning 
in neural networks are revealing some deep correspondences (Vanchurin et al. 2022). 
Though the learning mechanisms themselves differ (back-propagation in ANNs, for 
example, versus variation followed by natural selection), the result is changes to the 
weights of the network (Watson and Szathmáry 2016). 
 
It is important to emphasise how indirect this learning process is. “Selection” reflects the 
differences in reproductive success of organisms with different phenotypes. Those 
phenotypic differences may arise due to new mutations, which alter some weights in the 
network in some specific ways, or due to new combinations of genetic variants arising 
from sexual reproduction and recombination. Any differential reproductive success 
associated with the new phenotypes that emerge then results in an increased or 
decreased frequency of the variants in the relevant genomes in the next generation. 
The model encoded in the genome thus represents a historical record of information 
about the form of the organism and its fittedness to the environment.   
  
This kind of evolutionary connectionism (Watson et al. 2016) naturally leads to a 
compressed encoding between model space and feature space (i.e., between genotype 
and phenotype). Compression is driven by the cost of adaptation in lineages and 
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populations (McGee et al. 2022) and by “connection costs” in the network itself 
(Kashtan and Alon 2005). These connection costs naturally lead to modularity and, 
therefore, evolvability (Clune et al. 2013; Kashtan and Alon 2005). This emergent 
modularity is reinforced by environments where different factors vary independently 
over time, making separable adaptations optimal (Clune et al. 2013; Huizinga et al. 
2018; Kashtan et al. 2007; Wagner 2013). 
 
Crucially, this kind of indirect (generative) encoding, using compressed representations 
in the latent variable space of the genome, is more robust and more evolvable than 
direct representations of phenotype would be, as highlighted by Watson and Szathmary 
(2016): 
  
“By separating model space from feature space, learned models can be used to 
generate or identify novel examples with similar structural regularities, or (particularly 
relevant to evolution) to improve problem-solving or optimisation ability by changing the 
representation of solutions or reducing the dimensionality of a problem” 

  
There is an important point, however, in which biology and machine learning diverge. In 
machine learning, each new model is trained de novo on large sets of data (e.g. images 
of horses), and develops a new compressed representation in the process. In biology, 
evolution has done the encoding job and each new individual inherits the compressed 
model (i.e., its genome). The encoding in biology is thus done across evolutionary time, 
in lineages, while the decoding is done by each new individual. Of course, what 
evolution has to act on – the only thing it can “see” – are the outcomes of these 
decodings, which will lead to some of the compressed generative models being 
favoured over others. 
  
 
Properties of the model 
  
A good test of this kind of conceptual analogy or model is whether it gives you anything 
more than what you put into it. In this case, the generative model analogy can account 
for and indeed predicts a number of additional genetic, developmental, and evolutionary 
phenomena. To explore these, we can begin by examining the important properties of 
generative models. These include: 
  

1.  Compression through a bottleneck layer. 
2.  Encoding in a latent variable space. 
3.  Abstract, indirect representations. 
4.  Intrinsic variability of outputs. 
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5.  Robustness. 
6.  Evolvability. 

  
These properties are tightly interrelated. Compression enforces the abstraction and 
encoding of latent variables. In machine learning, this prevents overfitting and yields the 
ability to generalize from the training data and create new instances of a given type. 
Crucially, this relies on a certain amount of randomness in the decoding process, which 
generates truly novel tokens. In machine learning models, such as variational 
autoencoders, the input data are represented as distributions from which individual 
values are sampled at random. In developing organisms, the randomness comes from 
the inherent noisiness of molecular processes. This noise is not just tolerated – it is an 
essential part of the system (Eldar and Elowitz 2010; Mitchell 2018; Tsimring 2014; Vogt 
2015) 
  
Collectively, these properties yield robustness and evolvability. The distributed nature of 
the representations in latent variable space means that alteration of individual latent 
variables is often tolerated by the system. Indeed, the inherent noise in the system 
means the decoder always has to contend with some variability and still be able to 
robustly produce an outcome within the desired range. There is a clear analogy here to 
“denoising” autoencoders, which can take a noisy or staticky image and generate a 
clean one (Kingma et al., 2013; 2019). Similarly, “the attractor feature of an 
autoassociative [gene regulatory] network means that it can solve the problem of 
recovering a particular state (usually represented as a vector), when presented with an 
initial pattern that resembles one of the memory vectors stored in its weights” (Paczkó 
et al. 2024).  
 
There is strong pressure, therefore, to not just encode developmental outcomes, but to 
find architectures that do so robustly (Alon 2006; Hallgrimson et al., 2019; Kitano 2004). 
Paradoxically, this robustness leads to evolvability (Wagner 2013). If no variation in 
parameters were ever tolerated, no change would be possible. In living organisms, 
many changes to the latent variables of the generative model (i.e., the DNA sequence) 
are well tolerated. This means genetic variation can accumulate in populations. Over 
time, however, these variants can have collective effects on the features of the output 
(i.e., the form or phenotype of the organism). In addition, the possibilities for phenotypic 
change are increased by the mixing and recombination of these variants during sexual 
reproduction (Paczkó et al. 2024; Watson et al. 2011). This accumulated genetic 
variation is then the substrate for evolution and can be selected based on the relative 
fitness of the resultant phenotypes. 
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It might seem, however, that the distributed nature of the latent representations of the 
features of the encoded objects would militate against the possibilities for evolution to 
act on specific traits or aspects of the phenotype. If the energy landscape is shaped at 
every point by the actions of multiple genes, and if every gene pulls on the landscape at 
multiple points, it might seem impossible either to change anything at all or to change 
one thing without changing many others at the same time. Here, lessons from machine 
learning and neuroscience may also be enlightening. 
  
  
Emergent modularity and disentangled representations 
  
So far, we have been considering how a genome could encode the form of an 
organism, in a normative sense – a cat versus a dog, for example. But of course we 
also want to know how variation in the genome can lead to variation in phenotypes, 
within a given species. Conceiving of the genome as encoding a generative model may 
give us a more accurate and useful picture of the relationship between genotypes and 
phenotypes than alternative metaphors, such as a program or a blueprint. 
  
While some single mutations may have large effects on various phenotypes, most 
phenotypic variation observed in natural populations reflects the combined effects of 
many genetic variants with individually tiny effects. That is, most traits are highly 
polygenic, or even omnigenic – at least potentially affected by variants in every gene 
expressed in a relevant tissue (Boyle et al. 2017). At the same time, most individual 
variants are pleiotropic – they may be statistically associated with variation in multiple 
phenotypic traits (Mackay and Anholt 2024; Milo et al. 2002; Wagner and Zhang 2011). 
In addition, the effects of any individual variant, at a biological level, are often epistatic – 
that is, they may show a non-linear context-dependence on the presence of other 
genetic variants (Boyle e al. 2017; Mackay and Anholt 2024; Milo et al. 2002; Phillips 
2008). 
 
This architecture presents a puzzle. How could natural or artificial selection act on 
specific traits, without affecting all kinds of other traits at the same time? Work on 
generative machine learning models has shown that a distributed, non-linear encoding 
in latent variable space need not imply gridlock. Even if individual variables do not 
specifically or directly encode particular features, combinations of such variables may 
demonstrate what we call emergent modularity. 
  
This feature is evident in many machine-learning models, especially ones where it has 
been selected for such that individual features in the output can be modified 
independently (Burgess et al. 2018; Higgins et al., 2017). Different features may be 
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represented in orthogonal low-dimensional subspaces or manifolds in latent variable 
space, thus making it possible to manipulate them independently (Wang et al., 2022). 
For example, in some models designed to produce new images of human faces, it is 
possible to independently modify distinct features of the output, such as sex, age, facial 
hair, facial expression, accessories such as glasses, and so on (Bengio et al., 2013; 
Chen et al., 2016; Choi et al., 2018; Lee et al., 2020; Shen et al., 2020). Readers 
familiar with neuroscience may recognise the related ideas of disentangled 
representations, manifolds, and communication subspaces, the emergence of which is 
similarly favored under conditions where tasks vary independently (Alberch 1991; 
Bernardi et al. 2020; DiCarlo et al. 2012; Flesch et al. 2022; Gallego et al. 2017; 
Johnston and Fusi 2023). 
  
The same of course is observed in animal and plant breeding. It is possible to select for 
an increase or decrease in specific quantitative traits by selective breeding, which 
enriches for combinations of genetic variants with shared effects on the selected trait, 
without altering the mean of all the other traits that the individual variants involved may 
also affect. To put this in machine-learning terms, the representations of different traits 
may be orthogonal to each other in latent variable space. It may thus be possible to 
push the output features along one dimension without altering the features on other 
dimensions (Figure 4). This kind of emergent modularity, with disentangled 
representations, may arise naturally under conditions where environmental factors 
themselves have a history of varying independently (Clune et al. 2013; Huizinga et al. 
2018; Kashtan and Alon 2005; Kouvaris et al. 2017; Wagner et al., 2007; Watson et al. 
2014). 
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Figure 4. Emergent modularity in genotype-phenotype relations.  Each genome carries millions of 
individual genetic variants, each of which may – in a tiny way – affect multiple different phenotypes (top 
row). Analogously images in the full-dimensional input or output space of a VAE carry a plethora of 
possible variations (top row). In turn, each phenotype is polygenic – i.e., affected by thousands of 
individual variants. However, these sets of variants (or “polygenes”) may give rise to disentangled 
representations in latent variable space (middle row). In the analogy with VAEs for image generation, 
distinct features of encoded faces can be manipulated independently because they are encoded in 
orthogonal dimensions of latent variable space (from Shen et al., 2020). In living organisms, this kind of 
orthogonal encoding means that different phenotypes (P1-P3) may be selected independently (bottom 
row).  
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Finally, complex dynamical systems may also display unanticipated, qualitatively novel, 
emergent phenotypes. The non-linearities inherent in generating energy landscapes 
that constrain developmental processes can – under altered circumstances – 
sometimes generate novel attractor states, pulling the system into points in state space 
that are far from those normally occupied. Cancer is an obvious (maladaptive) example, 
at the molecular level, but there could also exist novel attractors at the level of 
organismal form. The states that may emerge under these kinds of circumstances are a 
property of the architecture of latent variable space, but one that has not been trained or 
directly selected for. Such qualitatively novel (and often maladaptive) phenotypes are 
much harder to explain in blueprint or program conceptions. 
  
  
Formalisability 
  
A key advantage to the generative model conception is that it can readily be formalised. 
Waddington’s perspective remained metaphorical while developmental biology was 
limited to reductive approaches aimed at manipulating single genes at a time (Baedke 
2013). But this old idea is now being revived and formalised in many areas of 
developmental biology, as researchers finally have the tools to investigate whole 
systems (Huang 2012; Wang et al. 2010; 2011). These include the ability to monitor 
expression of all genes in the genome in single cells, as well as the computational tools 
and concepts to model the resultant data (Huang 2012; Paczkó et al. 2024; Sáez et al. 
2022). The success of these approaches reinforces the view that Waddington’s 
landscape is not just a useful way of thinking about how the genome directs the 
processes of development – it is the right way. 
  
The regulatory interactions underlying a gene regulatory network can be formally 
modelled with sets of ordinary or partial differential equations (Teschendorff and 
Feinberg 2021). Setting these by hand becomes cumbersome or effectively impossible 
after a certain (fairly low) level of complexity. Clustering and machine learning methods 
have also been used to implement dimensionality reduction from large amounts of 
single-cell gene expression data, in order to filter the noise and derive interpretable 
models of the underlying gene regulatory network and cell fate transitions for 
subsequent functional analysis in silico (Norman et al. 2019; Qiu et al. 2022; Sáez et al. 
2022; Teschendorff and Feinberg 2021). Recent work has also taken advantage of 
deep learning methods (Chen and Li 2022; Mao et al. 2022), including variational 
autoencoders (Maizels et al. 2024; Ouyang et al. 2023; Shu et al. 2021) for similar 
purposes. 
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Maizels et al. note that “deep generative modelling is particularly well suited to learning 
hidden variables that capture the complex distributions within high dimensional data.” 
We propose a deeper correspondence: that deep learning connectionist methods that 
produce generative models are not just a useful tool for analysing or simulating gene 
regulatory networks but reflect more fundamentally the principles by which such 
networks come to be in the first place. The genome instantiates just such a 
compressed, generative model, with latent variables learned through evolution (Watson 
and Szathmáry 2016) and decompressed through the processes of development to 
generate new individuals. 
  
This perspective may also have direct applicability in the field of Artificial Life (ALife). 
Various types of encoding schemes are currently used in this field, to set a relationship 
between an artificial “genome” and the form of an artificial organism, whether that is 
realized in physical form or in silico. The vast majority of ALife encoding schemes, 
whether simple direct encodings or complex high-non-linear or developmental 
encodings, tend to be manually predefined by the experimenter before machine learning 
tools are used to find high-performing genomes for those specified developmental rules 
(Cheney et al., 2013: Clune et al., 2009; Hornby et al., 2001; Sims et al., 2023; Stanley, 
2007). The perspective presented here, of framing an ALife genome as analogous to a 
latent space vector in a deep neural network, should enable a vast body of work that 
uses the machine learning methods that train deep neural networks to find high 
performing encoders and decoders for this genotype-to-phenotype mapping (Feng et 
al., 2017; Gaier et al., 2020; Volz et al., 2018; Yosinksi et al., 2012). 
 
  
Conclusion 
  
The history of biology highlights the danger of naively reaching for the latest 
technological fad as a metaphor for some aspect of biology (Cobb 2021). However, 
thinking of the genome as instantiating a generative model of the form of the organism 
seems fairly well supported by the analyses presented above. Of course, the metaphor 
has limits, notably in the way the model is acquired and in the architecture of the 
network that encodes it. The more important question than whether it is perfect is 
whether the analogy is conceptually and heuristically useful (Cobb 2021; Keller 2020). 
  
We argue that it is an improvement over the concepts of the genome encoding a 
“blueprint”, “program”, “recipe”, or “resource”. The first two imply an overly linear, 
isomorphic, direct, and deterministic relationship between aspects of genotype and 
phenotype or the developmental processes that produce phenotypes. The third is more 
organic, but does not offer meaningful mechanistic insights, while the fourth is simply 
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rather vague. The “generative model” concept avoids those connotations and seems to 
give a more apt conception of the genotype-phenotype relationship and the nature of 
information encoding in the genome. It may indeed be the foundation of a theory, rather 
than just a metaphor or conceptual analogy. 
  
In particular, the notion of the genome encoding a generative model for the 
development of a new individual organism seems to capture very well the job 
description of the genetic material. Of course, development requires many additional 
resources – most notably, a fertilised egg with the appropriate cytoplasmic 
endowments, but also a permissive environment more widely. But the genome does 
play a distinctive role in this process and it seems perfectly apt to describe it as a store 
of information about organismal form (and its fittedness to the environment). The 
generative model concept may help us move from a view where the genome somehow 
actively drives development to one where the latent variables of the model collectively 
constrain the self-organising processes of development.  
  
The encoder-model-decoder scheme also matches well the processes of evolution, 
compression in each generation to a single cell, and decompression of this information 
through development. Moreover, the known properties of artificial autoencoder systems, 
including the generation of compressed, orthogonal representations can account for a 
number of observed properties of genotype-phenotype relations, including the 
evolvability of distinct traits. 
  
However, what the analogy adds in precision, it lacks in familiarity. If the goal is to 
explain these concepts to the general public, appealing to an unfamiliar term like a 
“generative model” is unlikely to be immediately helpful. To communicate this idea 
effectively will likely require a good deal of explication. But perhaps we should not be 
surprised that one of the deepest mysteries of life – how the genome encodes the form 
of an organism – cannot, in fact, be captured and conveyed by a simple, familiar word 
or phrase or concept. 
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