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Abstract

The volume and complexity of biological data have significantly increased in
recent years, often represented as network models continue to increase at a rapid
pace. However, drug discovery in the context of complex phenotypes are hampered
by the difficulties inherent in producing machine learning algorithms that can
integrate molecular-genetic, biochemical, physiological, and other diverse datasets.
Recent developments have expanded network analysis techniques, such as network
embedding, to effectively explore multilayer network structures. Multilayer networks,
which incorporate various nodes and connections in formats such as multiplex,
heterogeneous, and bipartite networks, provide an effective framework for merging
diverse and multi-scale biological data sources. However, current network embedding
methods face challenges and limitations in addressing the heterogeneity and diversity
of these networks. Therefore, there is an essential need for the development of new
network embedding methods to manage the complexity and diversity of multi-omics
biological information effectively. Here, we report a universal multilayer network
embedding method MultiXVERSE, which is to the best of our knowledge the first
one capable of handling any kind of multilayer network. We applied it to a molecular-
drug-disease multiplex-heterogeneous network. Our model made new predictions
about a link between GABA and cancer that we verified experimentally in the
Xenopus laevis model.
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1 Introduction
Network graph models are highly effective for depicting real-world objects through their relation-
ships and interactions [1]. They offer valuable insights into the connections between different
entities and are utilized as tools to investigate complex systems across various fields [2, 3, 4]. A
significant challenge in machine learning involves converting high-dimensional graph-based data
into a feature vector. Indeed, these methods were originally designed for vector data and cannot
be directly applied to biological datasets such as biological networks [5, 6]. Network embedding,
also known as graph representation learning, addresses this issue by transforming network data
into formats compatible with conventional machine learning tools, thereby broadening the scope
of machine learning applications in network analysis.

Network embedding techniques have proven highly effective across numerous applications,
including community detection, node classification, and link prediction. Capable of handling vast
networks with millions of nodes, these techniques are particularly valuable in the era of big data.
Consequently, network embeddings are increasingly used to analyze various large-scale networks,
such as social [3], neuronal [4] or molecular networks [2, 7, 8].

The volume and complexity of biological data have significantly increased in recent years,
often represented as multilayer network models [1, 9]. Multilayer networks, which incorporate
various nodes and connections in formats such as multiplex, heterogeneous, and bipartite networks,
provide an especially effective framework for merging diverse and multi-scale biological data
sources [1, 9]. However, current network embedding methods face challenges and limitations in
addressing the heterogeneity and diversity of these networks [8]. Therefore, there is an essential
need for the development of new network embedding methods to manage the complexity and
diversity of multilayer networks effectively.

In this work, we extended MultiVERSE [8], a multilayer network embedding algorithm tailored
for the application of machine learning techniques to these multilayer networks but limited to a
maximum of two multiplex networks. MultiVERSE is based on the VERSE framework [10], and
coupled with Random Walks with Restart (RWR) on multilayer networks [9]. Recently, RWR
has been extended to a universal random walk with restart using a method called MultiXrank
[11] allowing the exploration of any kind of multilayer networks. We extended MultiVERSE with
MultiXrank and it is now a universal multilayer network embedding method that we named
MultiXVERSE. Our method can handle any multilayer network defined as a composition of
various multiplex and monoplex networks interconnected through bipartite interaction networks
(see Figure 3 for an example). Within this multilayer structure, each network may also be
weighted and/or directed. And we can add as many multiplex and bipartite networks as we want
with this extension without limitations, except of course computational power.

Consequently, MultiXVERSE provides a means to network embedding on these multilayer
networks, which are characterized by their rich and complex interactions. This approach is
particularly effective in representing the multi-scale interactions typically observed in biological
systems. For biology, this approach allows to aggregate network data from drugs, diseases, genes,
patients etc... in the same network representation and machine learning can be applied on the
resulting embeddings for a wide variety of application including drug repositioning, new predicted
gene-disease or drug-target links, the discovery of specific biological functional modules for
diseases integrating genes and drugs etc... To the best of our knowledge, it is the first time that
network embedding can be applied to any kind of multilayer networks without any limitations
on the number of multiplex networks or the type of neworks (weighted, directed, undirected) .

In this article, we applied MultiXVERSE to a biological multilayer network containing data
on gene, drug, and diseases interactions and evaluated the quality of the embedding using link
prediction (a standard approach in multilayer network embedding [8, 12, 13]). Second, we
clustered the embeddings to find functional biological modules, which revealed new predictions of
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Figure 1: A universal multilayer network consisting of 3 distinct multiplex networks
(gene, drig and disease), each represented by different colors (yellow, purple, and blue).
Each of these multiplex networks consists of various types of nodes, squares are genes,
circles are drugs and triangles are diseases. They are interconnected through three
bipartite networks (gene-disease, drug-target and drug-disease), which are visualized here
as bipartite interactions for clarity. The number of multiplex networks and layers inside
the multiplex networks is arbitrary and could be more.

a link between GABA and cancer. Third, we applied link prediction on the embeddings of GABA
agonists drugs and found new links between GABA receptors and cancer. Neurotransmitters are
emerging targets in cancer [14, 15] and as such is a case study particularly suited for evaluating
our system. Finally, we experimentally tested the new prediction of GABA as a potential cause
of cancer in a tadpole melanocyte model, and validated the prediction linking GABA-modulating
drugs to a cancer-like phenotype in the absence of classic carcinogens, oncogenes, or DNA damage
as the initiator of cellular conversion.

2 Materials and methods

2.1 MultiXVERSE: a universal multilayer network embedding
We extended MultiVERSE [8] to MultiXVERSE for universal multilayer network embedding .
This method computes the similarities between nodes using random walks with restart on any kind
of multilayer network [11] and optimizes the embeddings using Kullback-Leibler minimization.
We present the general method of MultiXVERSE in this section.

Within the MultiXVERSE framework, it is necessary to formulate a similarity metric
for the multiplex-heterogeneous network, designated as GMH . This metric, denoted simG :
VMH × VMH → R, maps pairs of nodes within VMH to a real number, reflecting their level of
similarity. It is defined as follows:

∀v ∈ VMH ,
∑
u∈V

simG(v, u) = 1 . (1)
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Hence, simG(v, .), which signifies the similarity metric for any given node v within the
multiplex-heterogeneous network GMH , is conceptualized as a probability distribution. Given
that, one can obtain the normalized similarity distribution within the embedding space by
applying the softmax function. Formally, let wi represent the embedding of node i within
this space. Consequently, the similarity between the embeddings of two nodes wu and wv is
characterized by the dot product wu · wT

v , yielding the following expression:

simEmb(v, .) =
exp(wv · wT )∑n
i=1 exp(wv · wi)

. (2)

The purpose of MultiXVERSE is to closely estimate the similarity distribution within the
embedding space, represented as simEmb : VMH × VMH → R, such that for all v in VMH , the
relationship simG(v, .) is approximated by simEmb(v, .). The optimization during the learning
phase is executed through the minimization of the Kullback-Leibler divergence between the two
similarity measures: ∑

v∈VM

KL(simG(v, .) ∥ simEmb(v, .)) (3)

By keeping only the terms related to simEmb as simG is constant, we derive the objective
function as follows:

L = −
∑
v∈VM

simG(v, .) log(simEmb(v, .)) (4)

At each iteration, since simEmb is constructed as a softmax function, it necessitates normal-
ization across the entire network’s nodes, a process that is computationally intensive. Analogous
to the methodologies employed in the original MultiVERSE and VERSE algorithms, Noise
Contrastive Estimation (NCE) is utilized to approximate these computations [16].

To sum up, in this framework, the similarity in the multiplex-heterogenous network is
computed using MultiXrank [11]. And MultiXVERSE applies Kullback-Leibler minimization
to optimize the embeddings. The parameters for random walks with restart on the multilayer

networks are the following: r = 0.7, η =
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The reader can refer to the original article for more details on the method and particular
implementation of the algorithm [8] and [11]. The code for MultiXVERSE can be found at
https://github.com/LPioL/MultiXVERSE.

2.1.1 Datasets for the gene-drug-disease multilayer network

We used several different datasets to construct the multiplex-heterogeneous network, which we
constructed to be composed of one human molecular multiplex network (3 layers), one drug
multiplex network (4 layers) and one disease monoplex network. The multiplex networks are
linked by 3 bipartite networks: drug-disease, gene-disease, and drug-target networks.

The multiplex networks are the following:

• Human molecular multiplex network: This network is a molecular network, extracted
from [8], composed of 3 layers:

1. A protein-protein interaction (PPI) layer which integrates 4 datasets: Hi-Union, APID
(apid.dep.usal.es) (Level 2, human only), Lit-BM (http://www.interactome-atlas.org/
download).
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2. The second layer is a pathways layer constructed from the human Reactome data
[17] extracted from NDEx [18].

3. This last layer is a molecular complexes layer corresponding to the fusion of Hu.map
[19] and Corum [20].

• Drug multiplex network: The multiplex drug network integrates several sources and
interaction types and has been extracted from [11]. Data is derived from Cheng et al.
[21] and the pharmacological drugs interaction network available at snap.stanford.edu
were utilized. In this network, drugs are named according to DrugBank conventions,
encompassing both the multiplex network and its associated bipartite networks:

1. The first layer corresponds to clinical drug interactions. It includes 14,822 clinically
reported adverse drug-drug interactions among 667 drugs.

2. The second is the experimental drug combinations layer. It contains 737 experimen-
tally validated drug combinations involving 376 drugs.

3. The third represents the predicted drug combinations and includes 2,080 network-
predicted combinations for hypertensive drugs, covering 65 different drugs.

4. The last layer of the drug multiplex network includes the pharmacologic drug-drug
interactions and consists of 48,514 interactions determined by the pharmacological
effects of one drug on another, involving 1,514 drugs.

• Disease network: The Disease multiplex network (DIS) has been structured into two
layers, each representing different aspects of disease relationships:

1. Disease-Disease Network Based on Shared Symptoms: Originating from a bipartite
disease-symptoms network, this layer forms connections based on the cosine distance
between diseases, retaining all interactions where this distance is above 0.5, indicating
significant symptom overlap.

2. Comorbidity Network: This layer integrates epidemiological data to illustrate the
comorbidity relationships among diseases, highlighting epidemiological correlations.

Each layer provides a unique perspective on disease interactions, encompassing treatment
similarities, symptom relationships, and epidemiological data. .

The bipartite networks are:

• Gene-Disease Network: We extracted the curated gene-disease bipartite network from
the DisGeNET database in order to connect the two molecular and disease multiplex
networks.

• Drug-target Network: This network combines drug-target associations from multiple
sources including DrugBank Release Version 5.1.8 (accessible at https://go.drugbank.
com/releases/latest), DrugCentral release v10.12 (available at https://drugcentral.org/
download), and associations described by Cheng et al [21].

• Disease-Drug Network: The associations between diseases and drugs are obtained from
the Comparative Toxicogenomics Database.
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2.1.2 Evaluation of the approach

Link prediction Like previous studies [8, 12, 13, 22], we employed link prediction to assess
the efficacy of our embeddings and validate our universal multilayer network embedding method
for network biology and medicine. Our link prediction methodology entails initially removing
30% of bipartite edges randomly in each bipartite networks to form a training multilayer network.
Subsequently, we employ a Random Forest classifier to this training network, as described in
[8], and perform evaluations on a withheld subset consisting of 30% of the edges. The binary
classifier’s training method includes the utilization of various operators on the node embeddings.
These operators comprise Hadamard, Weighted-L1, Weighted-L2, Average, and cosine.

The objective of this validation method is to ascertain the quality of the embeddings in the
discovery of novel drug-gene-disease associations. At present, conducting direct comparative
analyses with alternative methodologies is not practicable due to the unique nature of the
embedding process for multilayer networks with three distinct node types from 3 differents
multiplex networks, a feature not yet paralleled in the existing literature.

Case study on cancer and neurotransmitters The second approach we used for valida-
tion is to test the method on a case study, here the to assess the link between neurotransmitter
and cancer [23, 24, 25]. Serotonin has already been linked to cancer [23, 24, 25] and we want to
know if other neurotransmitters may be predicted by our model which could lead to the discovery
of new targets and drug repositioning for cancer.

In order to test our system on these new results, we focused on biological modules. Once
MultiXVERSE has been applied to the drug-disease-gene multilayer network, we used a clustering
method on the embeddings and analyzed the clusters. The clustering method we applied is
spherical k-means [26] with k = 500 applied on the embedding.

We then applied link prediction to GABA agonist drugs using a Random Forest classifier
with the operator ’Average’.

2.2 Experimental testing:materials and method
2.2.1 Animal husbandry

Animal care was done in compliance with, and approval from, the Institutional Animal Care
and Use Committee (IACUC) under protocol number M2023-18 of Tufts University. Xenopus
embryos were collected according to standard protocols [27] in 0.1X MMR ((Marc’s Modified
Ringers) pH 7.8 + 0.1% Gentamicin. Xenopus embryos were staged according to [28].

2.2.2 Drug exposure

Stocks of muscimol (Tocris 0289) were kept at 10mM concentration in DMSO. Embryos were
exposed in 0.1X MMR during stages 12-43 in muscimol at a final concentration of 50 µM.

2.2.3 Histology

Embryos at stage 43-45 were embedded in JB4 according to the manufacturer’s directions
(Polysciences), and sectioned on a Leica microtome at 20µ. They were then photographed on a
Nikon SMZ-1500 microscope.
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ROC-AUC
Operators Gene-disease Drug-target Drug-disease Average
Hadamard 0.88± 0.002 0.92± 0.001 0.88± 0.003 0.90± 0.005

Weighted_L1 0.88± 0.002 0.62± 0.01 0.77± 0.002 0.76± 0.005
Weighted_L2 0.88± 0.003 0.63± 0.01 0.76± 0.001 0.76± 0.004

Average 0.94± 0.002 0.93± 0.003 0.91± 0.002 0.93± 0.002
Cosine 0.55± 0.005 0.83± 0.004 0.70± 0.002 0.70± 0.004

Table 1: ROC-AUC scores for link prediction using MultiXVERSE. Link predictions are
computed for the bipartite interactions of the multiplex-heterogeneous networks. The
scores higher than 0.9 are highlighted in bold.

3 Results

3.1 Computational results
3.1.1 Evaluation results using link prediction

The ROC-AUC is superior to 0.9 with Average operators for all bipartite networks (see Table
3.1.1), meaning that the method can predict with high precision the removed 30% of gene-disease,
drug-disease and drug-target links from the corresponding multiplex-heterogeneous networks.

The variance across all operators is minimal, indicating that the network embedding method
demonstrates high robustness and consistency in each iteration of the link prediction evaluation
test.

3.1.2 Consistency of MultiXVERSE with MultiVERSE results on the progeria
cluster

To assess the quality of the clustering of our embeddings, we analyzed the progeria cluster
similarly to [8] (see Figure 3A). Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic
disorder that causes premature aging. It is characterized by symptoms such as slowed postnatal
growth, facial structural abnormalities, premature cardiovascular diseases, lipodystrophy, hair
loss, and widespread osteodysplasia. HGPS arises from mutations in the LMNA genes, leading
to the production of a deleterious version of the Lamin A protein, known as Progerin.

The results are similar to those obtained with MultiVERSE: LMNA and HGPS were both
found to be associated. We found several genes in both cluster including ZMPSTE24 in the cluster
that is associated to accelerated aging in the literature and LMNA [29, 30], but also LEMD2,
RGS18, MARVELD1, KCNK13, IZUMO2, PERM1, LINC01857, and KIF12n. The cluster share
diseases to including muscular dystrophy, the Werner syndrome (the adult premature aging
syndrome), deformities of the hand and foot and cardiac disease associated to progeria [31].

KCNK13 is an especially interesting gene and encodes a K+ potassium ion channel (Potassium
Two Pore Domain Channel Subfamily K Member 13). It is related to the Birk-Barel syndrome
(BIBARS) - a rare genetic disorder characterized by motor and speech delay, impaired intellectual
development, early feeding difficulties, muscular hypotonia, hyperactivity, aggression, and facial
dysmorphism. This syndrome shares part of its phenotype with HGPS. HGPS has also been
related to bioelectricity [32] which can fall in the context of aging (or premature aging) as a
channelopathy [33].

Therefore, we conclude that we have similar results to the previous version of MultiVERSE
[8], even if we have more multiplex and bipartite networks (MultiVERSE has been applied on a
gene-disease mutilayer network) and a different set of networks, showing a good robustness to
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Figure 2: Network representation of the progeria cluster. Blue, orange are respectively
genes, diseases. Black, light blue, and red links are respectively molecular multiplex,
gene-disease, and disease multiplex links.

the integration of new data.

3.1.3 The clustering of the embeddings shows serotonin and GABA pathways
linked to cancer and developmental disorder

In order to learn more about the link between cancer, developmental disorders and neurotrans-
mitters [23, 24, 25], we analyzed the different clusters integrating those three components. We
found that several clusters show a link between neurotransmitters including GABA and serotonin
with cancer of malformations. One cluster (see Figure 3B) includes EPO and Darbepoetin
alpha. Recombinant human erythropoietin is commonly used in clinical settings to treat anemia
associated with cancer and chemotherapy. However, recent clinical trials indicate that rhEPO
might also negatively affect disease progression and patient survival [34]. Interestingly, EPO is
known to increase GABA currents [35] suggesting an implication of GABA neurotransmitter in
the adverse effect of EPO in cancer development.

A second cluster is linking developmental disorders, neurotransmitter drugs (gabapentin with
lamotrigine) with serotonin syndrome and large cell carcinomas (see Figure 3C). Gabapentin
is a structural analogue of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA)
[36]. Lamotrigine is an anti-glutamate agent and may enhance GABAergic transmission [37].
Lamotrigine can also augment serotonin re-uptake inhibitors [38]. This cluster suggests a link
between GABA, serotonin and cancer and that has been recently studied [23, 24, 25].

Lastly, we found a cluster (see Figure 3D) including developmental disorders Trimetazidine
that is an anti-ischemic drug that can inhibit platelet aggregation and regulate the expression of
serotonin in a rodent model [39].

These results indicate GABA pathways as potentially implicated in cancer development in
addition of serotonin pathways [23, 24, 25].

Our model predicted links between cancer and serotonin and GABA via clustering, and the
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Figure 3: Network representations of the clusters integrating cancer or developmental
disorders and neurotransmitters. A) Network cluster linking drugs regulating GABA and
melanoma B) Network cluster linking GABA drugs like gabapentin and large cell carcinoma.
C) Network cluster linking trimetazidine and malformations of cortex development. Blue,
orange and green boxes are respectively genes, diseases and drugs. Black, light blue, yellow,
light green and red links are respectively molecular multiplex, gene-disease, drug-target,
drug-disease, disease multiplex links.
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serotonin link has been validated by published data [23, 24, 25]. We decided to test the link
between GABA and cancer using link prediction.

3.1.4 GABA drugs show different types of cancer in the first 10 predictions

In order to validate the link between GABA and cancer, we applied link prediction using the
embeddings on Baclofen, Zaleplon, Clobazam, Progabide, Zolpidem and Gabapentin. These
drugs are GABA agonists [40, 41, 42, 43, 44].

All of the tested drugs showed a link with cancer in the 10 first predictions, except with
Zolpidem that showed a link with rectum neoplasm at the 18th prediction. Baclofen had a
prediction for adrenal cortical carcinoma, Zaplelon for cancer of the esophagus and adrenal
cortical carcinoma, Clobazam for soft tissue sarcoma and experimented neoplasm, Progabide for
soft tissue neoplasm, and Gabapentin for soft tissue neoplasm.

The new prediction of GABA agonist as a potential trigger of cancer had not yet been
validated; thus, we sought to test it . experimentally.

3.2 Experimental results
In order to test the prediction that GABA pathway modulation should induce a cancer-like
phenotype, we used larval Xenopus laevis - a powerful model system commonly used to understand
carcinogenic dysregulation of cell function [45, 46, 47]. One type of cancer that is especially
readily investigated in frog embryos is the conversion of melanocytes, from normal pigment
cells to a hyper-proliferative, invasive melanoma-like phenotype [23, 47, 25, 48]. In order to
perturb GABA signaling, we used muscimol – a well-known GABA agonist [49, 50, 51, 52, 53].
Muscimol itself is not in the original data we used in our model but it is a GABA(A) agonist
like Progabide [54, 55] that was found in the link prediction (see above), enabling us to test
the utility of the model’s categorical predictions for novel drugs that it did not have direct
experience with. Fifty Xenopus embryos were exposed to 50 mM muscimol between the stage
12 to st. 45 (after completion of gastrulation through swimming tadpole stages), and then
sectioned. The results are shown in Figure 4. In contrast to controls, all of the exposed animals
exhibited a drastic hyperpigmentation due to the melanocytes’ changing shape (from their normal
round form to a much more elongated morphology), and migrating into inappropriate regions
that are normally clear. This phenotype has previously been characterized quantitatively with
respect to melanocyte shape and number, as well as the expression of cancer-related markers
and melanoma-like migration into gut, brain, and vascular tissues [23, 47, 25, 24, 48]. These
results confirm the prediction of the model and link GABA-modulating drugs to a cancer-like
phenotype in the absence of classic carcinogens, oncogenes, or DNA damage as the initiator of
cellular conversion.
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Figure 4: Melanocyte conversion phenotype induced by muscimol exposure. All panels
are transverse sections; A,B are taken through the gut, while C,D are taken through the
mid-tail. (A) Control embryos show small numbers of discrete, round melanocytes (white
arrows). (B) In contrast, muscimol exposure induces melanocytes to over-proliferate
and form long, stretched out projections that cover the gut cavity and other locations
(red arrows). Compared to round melanocytes in the trunk and tail of controls (C),
melanocytes in muscimol-treated animals (D) can be clearly seen to have an abnormal
invasive shape and distribution (D). (E) Closeup of melanocytes invading the neural tube
after muscimol exposure. Nt = neural tube.
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4 Discussion
In this work, we presented what is, to the best of our knowledge the first universal multiplayer
network embedding method with no limitations on number of multiplex and bipartite networks
thanks to recent developments in RWR [11]. We applied MultiXVERSE to a multilayer network
containing gene, drug, and diseases interactions and evaluated the quality of the embedding
using both clustering and link prediction to demonstrate the quality of the embeddings. Our
model predicted links between cancer, serotonin, and GABA via clustering. The serotonin link
has been validated by published data [23, 24, 25]. Next, we tested the new prediction from
clustering between GABA and cancer using link prediction and found again predictions between
GABA agonists and cancer. Finally, we tested this new prediction experimentally and confirmed
the ability of GABA-modulating drugs to induce a cancer-like phenotype in a vertebrate model
system in vivo, in the absence of classic carcinogens, oncogenes, or DNA damage as the initiator
of cellular conversion. These kinds of data have important implications for understanding of
cancer etiology and possible normalization [56, 57, 58] efforts using neurotransmitter modulators,
and need to be tested in preclinical mammalian models next.

Our main domain of application here was drug discovery for cancer but the embeddings of
a gene-drug-disease multilayer networks may be used for many other applications. Different
questions in network biology could be addressed, by finding new genes related to specific diseases,
such as the interesting target – the ion channel KCNK13 - revealed by our case study on the
progeria cluster. This may be especially relevant due to the recent hypotheses about the role of
bioelectric signaling in aging [33, 59, 60]. We also applied link prediction for different drug-disease
associations. Our method for drug repurposing has currently one significant limitation: in the
case of new drug-target predictions, we don’t know if the drug will activate or inactivate the
target. This may be resolved by using directed networks in the multiplex networks and training
link prediction models on the embedding integrating the directional information of the links.

Our system revealed predicted a causal link between GABA and cancer development that we
validated experimentally in a vertebrate model system in vivo. This link has been studied before
and it has been found that GABA has a driver role in controlling stem and proliferative cell
state through GHB production in glioma [61]. It has been reported too that membrane potential
differences and GABA(A) receptor expression in hepatic tumor versus non-tumor stem cells
[62]. However, contradictory evidences has been reported showing that GABA could have an
inhibitory effect on tumor progression or cell proliferation [63, 64]. Consequently, more research
is necessary to understand the impact of GABA on cancer.

To improve the capabilities of Large Language Models (LLMs) in processing text-enriched
images, researchers have developed embeddings specifically designed to capture image contexts.
These embeddings are integrated as soft prompt inputs in LLMs, enhancing the models’ ability
to effectively handle visual information [65]. Similarly, we could use the node embeddings
as input to use the power of LLMs for generative drug discovery including the richness of
multiplex-heterogeneous network biological data. One relevant effort that can be integrated
into this framework in the future is the bioinformatics of shape, which seeks to formalize and
make amenable to machine learning data on large-scale anatomical outcomes in embryogenesis,
regeneration, cancer, and bioengineering [66, 67]. We expect that future systems that combine
pattern inference with diverse multi-modal datasets, comprising physiological, anatomical, and
molecular-biological data will be a critical aid to human scientists and clinicians seeking to
develop interventions for a wide range of biomedical applications.
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