
Article Not peer-reviewed version

The Role of Bioelectrical Patterns in

Regulative Morphogenesis: An

Evolutionary Simulation and Validation in

Planarian Regeneration

Sammy Hansali , Léo Pio-Lopez , Jennifer V. LaPalme , Michael Levin *

Posted Date: 28 August 2024

doi: 10.20944/preprints202408.2041.v1

Keywords: bioelectricity; morphogenesis; neural cellular automata; evolution; bistability

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3803458
https://sciprofiles.com/profile/128126


 

Article 

The Role of Bioelectrical Patterns in Regulative 
Morphogenesis: An Evolutionary Simulation and 
Validation in Planarian Regeneration 
Running Title: Bioelectric Goal States 

Sammy Hansali 1,†, Léo Pio-Lopez 1,†, Jennifer V. LaPalme 1,2 and Michael Levin 1,3,* 

1 Allen Discovery Center, Tufts University, Medford, MA, United States 
2 University of Massachusetts School of Medicine, MA, United States 
3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States 
* Correspondence: michael.levin@tufts.edu 
† These authors contributed equally to this work. 

Abstract: Endogenous bioelectrical patterns are an important regulator of anatomical pattern during 
embryogenesis, regeneration, and cancer. While there are three known classes of instructive 
bioelectric patterns: directly encoding, indirectly encoding, and binary trigger, it is not known how 
these design principles could be exploited by evolution and what their relative advantages might 
be. To better understand the evolutionary role of bioelectricity in anatomical homeostasis, we 
developed a neural cellular automaton (NCA). We used evolutionary algorithms to optimize these 
models to achieve reliable morphogenetic patterns driven by the different ways in which tissues can 
interpret their bioelectrical pattern for downstream anatomical outcomes.  We found that: (1) All 
three types of bioelectrical codes allow the reaching of target morphologies; (2) Resetting of the 
bioelectrical pattern and the change in duration of the binary trigger alter morphogenesis; (3) Direct 
pattern organisms show an emergent robustness to changes in initial anatomical configurations; (4) 
Indirect pattern organisms show an  emergent robustness to bioelectrical perturbation; (5) Direct 
and indirect pattern organisms show an emergent generalizability competency to new (rotated) 
bioelectrical patterns; (6) Direct pattern organisms show an emergent repatterning competency in 
post-developmental-phase. Because our simulation was fundamentally a homeostatic system 
seeking to achieve specific goals in anatomical state space, we sought to understand the role of 
anxiolytics that reduced concern over the distance to those goals. We simulated selective serotonin 
reuptake inhibitors, which diminished ability of artificial embryos to correctly interpret bioelectric 
patterns due to an altered organismal reward machinery, leading to higher variance of 
developmental outcomes, global morphological degradation, and induced in some organisms 
anatomical bistability. These computational findings were validated by data collected from in vivo 
experiments in SSRI exposure in planarian flatworm regeneration.  
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1. Introduction 

Morphogenesis, a central aspect in developmental biology, is the processes that governs the 
formation and development of an organism's large-scale structural features.  These processes 
involve large numbers of cells that create and repair a species-specific target morphology [1,2]. 
Understanding this process is critical for advancing the study of evolutionary developmental biology 
and for pioneering new approaches in regenerative medicine. Specifically, knowledge of how groups 
of cells interpret biophysical signals to determine the anatomical structure they will cooperate toward 
is crucial for addressing issues like birth defects, recovery from traumatic injuries, degenerative 
diseases, cancer, and aging. 
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One complex and poorly understood aspect is the cessation of growth once the desired structure 
is fully formed. For instance, axolotls can regenerate perfect replicas of lost limbs, tails, eyes, jaws, 
and other body parts, with growth and remodeling halting precisely when the correct form is 
achieved [3]. Moreover, regulative morphogenesis can reach the target morphology whether the 
starting point is a typical anatomical scenario or a novel configuration. For instance, tadpoles that 
start with experimentally-induced disordered placements of craniofacial features still develop into 
normal frogs {Vandenberg, 2012, 22411736}{Pinet, 2019, 30974103;Pinet, 2019, 31253636}. This occurs 
because the eyes, nostrils, and mouth shift along unconventional paths from their initial, misplaced 
positions to align correctly with standard frog anatomy. This ability is often described as a form of 
anatomical homeostasis, where deviations from the intended morphology are gradually corrected to 
achieve the desired anatomical structure, or in other words progressively reducing the error between 
the current state and a specific anatomical setpoint (the target morphology) [4–6]. 

How do cellular collectives reliably navigate morphospace [7] to form correct anatomical 
structures despite perturbations? Cells coordinate their actions during morphogenesis through a mix 
of chemical, biomechanical, and bioelectrical signals [1]. Rather than a precise anatomical blueprint, 
the genome provides the cellular building blocks, such as proteins, and it's the role of developmental 
physiology to translate this information into morphogenetic actions. Here, we focus on one layer of 
that control information: bioelectrical prepatterns [1,8–11], e.g. spatiotemporal distributions of resting 
potential, established by ion channels and shaped by electrical synapses known as gap junctions.  

Bioelectricity refers to the endogenous electric potentials that are generated within cells and 
tissues, which are essential for coordinating cellular activities and control the large-scale patterning 
of anatomical structures [12]. These bioelectric signals, characterized by resting transmembrane 
voltage potential gradients across all cells, act as critical regulators of cellular behaviors formation 
[13]. Bioelectric circuits, which are found in both neural and non-neural tissues [2,14] and are 
facilitated by electrochemical synapses such as gap junctions for non-neural tissues, play a crucial 
role in regulating large-scale cell growth and overall tissue morphology [2,14,15]. These circuits are 
essential for making collective cellular decisions about migration, differentiation, and gene 
expression that affect the entire organism and guide it towards a specific geometry. Additionally, 
bioelectric signals regulate species-specific anatomical features during critical processes such as 
embryogenesis and regeneration interacting with molecular-genetic pathways to ensure the proper 
coordination of tissue morphology and maintain tissue homeostasis [8]. 

Recent advancements in the study of developmental bioelectricity have enabled specific 
manipulation of cellular voltage states in vivo by manipulating the endogenous sources and conduits 
of bioelectrical state, affording much greater specificity than classical techniques dependent on 
electrodes [13,16–19]. Optogenetic and chemogenetic tools have been developed to control ion 
channel activity, and thus Vmem patterns, with high precision [20]. These manipulations can induce 
regeneration [21–26], de novo growth of entire organs such as eyes [27], repair of birth defects 
induced in the brain, heart, and face by chemical or genetic teratogens [28–31], and the normalization 
of cells expressing powerful human oncogenes [12,20,32–34]. 

To increase impact of bioelectric modulation in fields like cancer, regeneration, embryonic 
malformations and aging [8,35,36], as well as in bioengineering, it is essential to crack the bioelectric 
code [26,37]. This means, moving beyond existing information on how voltage levels manipulate 
second messengers and regulate gene expression [10,38–47] and stem cell behavior [48–53] to achieve 
a computational understanding of how specific bioelectric patterns map onto anatomical outcomes. 
Such knowledge could then be used to derive efficacious interventions for biomedical settings 
[18,54,55], as well as a better understanding of the contribution of bioelectric pattern control 
mechanisms in an evolutionary-developmental biology context [56,57]. 

The key to understanding any biological code lies in deciphering how it is read or decoded  [58–
61] — what information does it contain and how is this information interpreted by cells and tissues? 
The bioelectric code has been shown to operate through at least three main types of patterns: directly 
encoding, indirectly encoding, and discrete triggers {Lobo, 2014, 24402915}. Directly encoding pre-
patterns map 1:1 with the specific target morphology that they encode. For example, the “Electric 
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Face” is a pre-pattern that arises during embryogenesis of Xenopus laevis and instructively demarcates 
the location of future tadpole facial structures [62]. It is a direct pattern because the regions of 
bioelectric state indicate, in a clear way, the actual locations of the craniofacial organs.   

In contrast, indirectly encoding pre-patterns do not map to the specific structures that they 
encode in any obvious manner. For example, a specific Vmem pattern induces the growth and 
patterning of a new tail  [63]. Similarly, a Vmem gradient controls the size [64] and specific shape [65] 
of planarian head regeneration. In both of these cases, bioelectric pre-patterns specified growth of 
structures whose geometry could not have been guessed by inspection of the bioelectric pre-pattern 
– the voltage patterns don’t look like the anatomy they encode.  

Finally, trigger pre-patterns have even less similarity to the final outcome: they do not seem to 
encode specific structures and are very low information-content stimuli. Instead, they can initiate 
comprehensive morphogenetic programs that result in the formation of complex structures (such as 
organs and appendages) without requiring micromanagement of the specific structure. For example, 
inducing sodium influx or proton pumping to tadpole limb or tail amputation sites has been shown 
to trigger the regeneration of the entire appendage—with correct vasculature, innervation, and 
muscle—even during periods when such regeneration is not typically possible [21,26]. And, the same 
stimulus (triggered by the ionophore monensin) induces tails in a tadpole and legs in a froglet – the 
specificity is not in the signal but in the interpretation machinery triggered by it [26]. These examples 
indicate that bioelectric patterns can serve as master regulators, kick-starting the growth of complex 
structures, and all the myriad required molecular processes, from a relatively simple upstream event 
that itself doesn’t have the informational bandwidth to specify the details. 

While computational models exist of bioelectrical dynamics [66–72], there are currently no 
computational platforms that facilitate the study of the different modes of bioelectrical encoding in 
the context of morphogenesis, to generate testable predictions about interventions and these 
decodings’ evolutionary properties. To bridge these knowledge gaps, we built simulation software 
that enables exploration of how artificial organisms develop morphogenetic competencies over 
developmental and evolutionary timescales with the different types of bioelectrical patterns.  

We employed evolutionary algorithms to simulate the evolution of a neural cellular automata 
(NCA) [73] model for regulative morphogenesis, and studied its various properties under the 3 
different models of bioelectric encoding. We found that: (1) All three types of bioelectrical codes allow 
the reaching of target morphologies; (2) The resetting of the bioelectrical pattern and the change in 
duration of the binary trigger alter morphogenesis; (3) The direct pattern organisms show an 
emergent robustness to changes in initial anatomical configurations; (4) A The indirect pattern 
organisms show an  emergent robustness to bioelectrical perturbation; (5) Direct and indirect 
patterns organisms show an emergent generalizability competency to new bioelectrical patterns 
obtained via rotation of the original ones; (6) Direct patterns organisms show an emergent 
repatterning competency in post-developmental phase. Because our simulation was fundamentally 
a homeostatic system seeking to achieve specific goals in anatomical state space, we sought to test 
the effects of anxiolytics that reduced concern over the distance to those goals. We developed a 
selective serotonin reuptake inhibitor simulation, which predicted a diminished ability of artificial 
embryos to correctly interpret bioelectric patterns due to an altered organismal reward machinery, 
leading to higher variance of developmental outcomes, global morphological degradation, and 
anatomical bistability. These computational findings were then validated by data collected from 
planaria regenerating with SSRI exposure.  

2. Related Work on Artificial Embryogeny 

The field of artificial embryogeny has been historically centered on the French flag model  
[74,75], with a focus on how cells interpret positional information and differentiate into specific cell 
types based on morphogen concentrations to form a specific anatomy. This model relies on the 
existence of thresholds in the morphogen gradient to guide cell fate determination and spatial 
patterning. The foundational work of Lewis Wolpert introduced the French Flag model, which 
explained how morphogen gradients can provide positional information to cells, resulting in distinct 
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cellular fates based on concentration thresholds (Wolpert, 1969). Subsequent studies have developed 
mathematical and computational models to simulate the French Flag pattern formation. For example, 
Bowers [76] demonstrated the formation of modular structures in a computational evolutionary 
model of embryogeny, highlighting the phenotypic robustness in generating French flag-like patterns 
[76]. Recent studies have integrated the French Flag model with other theoretical frameworks in 
developmental biology, such as the Turing mechanism of pattern formation and gene regulatory 
networks. These integrative approaches have provided deeper insights into the robustness and 
flexibility of developmental patterning mechanisms [77]. Other work also included growth and repair 
simulation models, reaction-diffusion experimental models, and computational frameworks that aim 
to create robust and tunable axial patterns [77–79]. Chavoya and Duthen utilized a genetic algorithm 
to evolve cellular automata capable of generating various two-dimensional and three-dimensional 
shapes. They also evolved an artificial regulatory network (ARN) to generate cell patterns, effectively 
addressing the French flag problem [80,81]. The French flag problem has also been studied in the 
context of self-organizing paradigms, where the challenge lies in achieving robust and tunable axial 
patterns without the need for global signaling cues [82]. The French Flag model remains a pivotal 
framework in developmental biology and artificial embryogeny, facilitating our understanding of 
how cells interpret positional information to create intricate patterns during development.  

Recently, Neural Cellular Automata (NCA) models have been introduced in the field of in silico 
embryogeny [83–85]. Pio-Lopez et al. conducted a study on the scaling of goals from cellular to 
anatomical homeostasis using evolutionary simulations to resolve the French-flag problem [85]. The 
results suggested that the collective problem-solving of cells during morphogenesis can evolve into 
traditional behavioral intelligence by scaling up during evolution homeostatic competencies via 
stress sharing in metabolic space. Grasso (2022) explored the concept of Empowered Neural Cellular 
Automata in the context of morphogenesis. The study found that incorporating empowerment as a 
secondary objective in the evolution of NCA for morphogenesis tasks leads to higher fitness 
compared to evolving for morphogenesis alone [83]. This highlights the importance of incorporating 
empowerment as a guiding principle to enhance the efficiency and effectiveness of NCA in 
performing morphogenetic tasks. Very recently, Hartl et al. developed an NCA implementing a 
multi-scale competency architecture to resolve a more complex version of the French flag model, the 
Czech flag and a smiley face as another target morphology [84]. Other works extended modelling 
approach of morphogenesis with NCAs to the encoding of a manifold of NCA, each of them capable 
of generating a distinct image [86], growing 3D shapes [87], or hierarchical NCAs for morphogenesis 
[88]. 

However, none of these models incorporated the use of the bioelectrical pattern for regulating 
morphological behavior. Manicka et al. studied how non-neural cells collectively make decisions in 
the context of morphogenesis, by constructing a minimal biophysical model of a bioelectric network 
that integrates fundamental components and processes of bioelectrical signaling [89,90]. Although 
computational models of bioelectrical dynamics exist [66–72], there is no platform to analyze modes 
of bioelectrical decoding by cell groups in morphogenesis, or to predict their evolutionary effects. To 
fill this gap, we created simulation software by extending previous work using evolutionary NCA 
for morphogenesis [84,85], that explores how artificial organisms develop morphogenetic abilities 
over developmental and evolutionary times, driven by different types of bioelectrical patterns: direct, 
indirect and the binary trigger. 

3.  Materials and Methods 

3.1. In-Silico Evolutionary System for Bioelectrically-Regulating Morphological Behavior 

We simulated the evolution and development (Figure 1) of 9x9 cells artificial organisms on a 
morphogenetic task driven by different types of bioelectrical patterns using a genetic algorithm. 
Using this simulation, we aimed to gain insight on how biological organisms utilize bioelectric 
patterns during pattern formation and morphogenesis during regulative development, as well as to 
explore the developmental properties that emerge from organisms evolved with three classes of 
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bioelectric patterns. Due to the large space of possible anatomies that exist in nature, we simplified 
the model to explore the development of two organisms (the “Tadpole”, inspired by Vandenberg et 
al.’s tadpole craniofacial rearrangement experiment [91], and the “French Flag”, as described by 
Wolpert’s original French flag problem [74,75]), each with their own starting and target 
morphologies. The bioelectric patterns were designed by us, so that we could test our hypotheses on 
the emergent properties of organisms utilizing various patterns. As with all computational models 
of biology, we made choices about which features to simulate, and did not explicitly include all the 
mechanisms by means of which cells communicate, perceive and act on their environment, 
differentiate, and perform basic metabolic functions. While these details are important to biological 
systems, we did not require more advanced modeling to answer our specific questions. 

 
Figure 1. Representation of the NCA system. Examples B through D use French flags as examples to 
illustrate the concepts, but other morphologies can also be used in this system. A) Inputs and outputs 
for the cellular ANNs. Cellular ANNs take energy, molecule amounts, cell type, voltage, and (for 
French Flag organisms only) the fitness of the stripe they reside in. They output the cell’s actions – 
how much to open gap junctions and what number of molecules to distribute. B) Description of the 
original French Flag Problem. The concentration of the morphogen as it diffuses left to right across 
the tissue conveys positional information, which is interpreted by cells to determine their cell types. 
C) On the left is an overview of one evolutionary cycle. First, a population of 350 embryos is initialized 
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with randomized weights. Next, the embryos are allowed to develop and are selected based on their 
fitness and allowed to reproduce. All offspring from the reproduction phase have a 15% random 
mutation chance, after which the next epoch begins, for a total of 250 epochs before evolution 
concludes. On the right is an example of what the highest fitness French Flag organisms would look 
like at each epoch. During the first generation, the highest fitness organism achieves a fitness of 33% 
by maintaining the blue stripe in the correct location. By generation 125, the best organism achieves a 
fitness of 90% by learning that there should be a central white stripe and rightwards red stripe. It 
hasn’t learned that red stripes need a width of three. Finally, by the last generation, the best organism 
has learned to solve the French Flag morphology. D) Cellular bioelectricity and ANN. Each cell maps 
to a specific voltage ranging from 0 to -100 mV (specified by the bioelectric pattern) and a cellular 
ANN. E) Integration of anatomical and metabolic homeostasis. Organisms perform anatomical 
homeostasis to maximize fitness by following policies such as “Build a red stripe”. Cells perform 
metabolic homeostasis to maintain positive energy levels by following policies such as “Send 
molecules left”, following the policy of the organism. 

The following sections detail the structure and behavior of our artificial organisms and cells, the 
developmental cycles that enable embryos to reach adult morphologies, the evolutionary cycles by 
which a population’s best morphogenetic strategies are discovered, and the implementation of 
bioelectricity as a goal-encoded layer. 

3.1.1. Organisms 

Each digital organism possesses a distinct artificial neural network [2], similarly to the gene 
regulatory networks controlling the decision-making pathways in real cells [92].  Organisms are 
represented as 2-dimensional arrays of cells, depicted as colored circles, with each cell containing a 
copy of the ANN (see Figure 1D). Organisms have two stages: embryo and adult. The adult phase 
starts once the target morphology has been reached. Embryos are initialized as a 9 by 9 matrix of cells 
and undergo a developmental cycle to become an adult. Adults undergo fitness evaluations for 
selection at 100 steps.  

There are two species of artificial organisms in this work: “Tadpole” and “French Flag” (Figure 
2A). Tadpoles’ embryonic craniofacial morphology begins as deformed facial features but its adult 
morphology is a rearranged, symmetrical face, modeling the remarkable observed craniofacial repair 
of “Picasso tadpoles” [91] and the “electric face” prepattern known to drive face development [62]. 
The embryonic morphology of French Flag organisms begins as an undifferentiated monolayer of 
blue cells, which develops into the likeness of the French Flag. This models Wolpert’s famous French 
Flag problem [75], in which 3 colors are used to represent three distinct cell types in a positional 
information axis. 
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Figure 2. Embryonic morphologies, target morphologies and bioelectrical patterns. A) Embryonic 
morphologies, target morphologies, cell types, and molecule thresholds for cellular differentiation for 
each species. B) Specific bioelectric (direct, indirect, binary trigger) patterns used for each type and 
species. There is only one type of direct pattern, four types of indirect patterns, and one type of binary 
trigger pattern (divided across 3 stages: rest, trigger, and rest). Whenever a direct pattern is used, it is 
for a Tadpole organism. Any other pattern (indirect or binary trigger) corresponds to a French Flag 
organism. 

3.1.2. Cells 

Representation and Attributes 

Cells are represented as objects containing energy (a floating point number ranging between 0 
and infinity, initialized at 50), molecules (a floating point number greater than or equal to 0, initialized 
to an amount depending on the starting cell type (Figure 2A)), gap junctions (percentage between 0 
(fully closed) to 100 (fully open), initialized at 0), a cell type that depends on the species (Figure 2A), 
a voltage (integer between 0 and -100, initialization depends), and an ANN [93] (Figure 1A).  

An energy threshold greater than zero is required for cells to stay alive. At 0, the cells die. 
Molecules are exchangeable with neighboring cells and determine cell type. Gap junctions are 
channels between cells that regulate the flow of molecules according to their opening percentage. A 
cell’s type is its identity. The available cell types vary by species. Tadpoles possess 4 cell types (tan, 
red, black, and blue) while French Flags contain only three cell types (white, red, and blue) (Figure 
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2A). Voltage is another type of information that can be seen as a goal-encoded layer [26] in the form 
of different bioelectrical patterns (direct, indirect and the binary trigger, see Figure 2B).  

Cellular Perception-Action Cycle 

An activated cell behaves in a precise series of steps, similar to Algorithm 1 from Pio-Lopez et 
al. [85]. First, a bias of 0.5 and cellular attributes from times t and t-1 are passed as inputs to the cell’s 
ANN, which then returns the outputs.  

The inputs are energy and molecule levels, cell type, and voltage. In addition, French Flag cells 
have one extra input which is the current fitness of their stripe, similarly to [85].The outputs are the 
amount to open gap junctions and the number of molecules to distribute to neighboring cells (Figure 
1A). These outputs are then processed by the cell’s communication module, similarly to Algorithm 2 
from Pio-Lopez et al. [85]. The cell’s gap junctions are opened, and its molecules are transferred to 
the neighbors. The number of molecules distributed depends on both outputs. Molecules are 
distributed to neighboring cells in a randomized order. If the number of molecules a cell must 
distribute times the gap junction opening times the number of neighboring cells is greater than the 
cell’s molecule stock, then the cell will keep distributing molecules until it runs out of molecules. 
Then, the cell differentiates into a new cell type if it has met the new cell type’s threshold for 
molecules (Figure 2A). For details of various differentiation mechanisms explored in this work, look 
at (Supplementary Material, Figure S1). Every differentiation costs the cell 0.50 energy. 

Cells have a metabolic cost for survival, between 0.65 and 0.95 energy per activation, depending 
on the difficulty of the learning task. This energy loss per activation is counteracted by an energy gain 
of between 0 and 1 energy per activation. This energy gain is in proportion to the organism’s fitness 
at the beginning of the current timestep. Energy acts as a reward incentive for cells to cooperate 
towards correct morphogenesis. In sum, cells rapidly lose energy and die unless the organism reaches 
close to the target morphology by adulthood. Thus, an organism-level anatomical homeostatic loop 
is implemented from the binding of cellular-level metabolic homeostatic loops (Figure 2B). 

3.1.3. Development and Fitness 

Each embryo underwent a 100 timestep developmental cycle into an adult. Organisms learned 
to differentiate their cells in a way that increases fitness. For every timestep in a developmental cycle, 
all cells are activated in a random order. At the end of the 100th timestep, the adult’s fitness is 
evaluated out of 100 points. Fitness is quantified by how close the adult’s morphology is to its pre-
defined target morphology (either the Tadpole or the French Flag). Each species has its own specific 
fitness evaluation. For tadpoles, they received 30 points if the eyes are in the correct quantity and 
position, 28 points for the mouth, 6 points for the nose, and 36 points for the skin. Skin was weighted 
less to enable other organs to form despite the prevalence of skin cells.  

For the French Flag, organisms receive a fitness score according to how much they reached the 
appropriate morphology with 33.3 points for each stripe being in the correct quantity and position, 
each stripe matters equally. 

3.1.4. Evolution and Genetic Algorithm 

Each population of organisms underwent a 250-generation evolutionary cycle, with each 
generation composed of hundreds of developmental cycles (Figure 1C). A population contains 350 
organisms. To create and evolve populations, we used the ES-HyperNEAT genetic algorithm  [94]. 
HyperNEAT uses geometric regularities of the task domain to evolve large-scale neural networks 
that emulate neural connectivity patterns in the brain [95], but cells in non-neural tissue have similar 
connectivity. There are several stages of evolution. First, a population of 350 organisms was 
initialized, each with different ANN weights. For each generation over 250 generations, each 
organism receives a fitness equal to the average fitness from three development cycles. Averaging 
fitness controls for intra-organism fitness variability stemming from random activation. The top 20% 
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most fit organisms reproduce to populate the next generation. These offspring are also vulnerable to 
random mutations. We set an overall mutation rate of 15%. 

3.1.5. Bioelectric Patterns 

Every cell of an organism is assigned a voltage integer. A bioelectric pattern is defined as the 2d-
array of cell voltages that maps to an organism’s 2d-array of cells (Figure 1D). Organisms may decide 
to use the bioelectric pattern present to them, or not, to achieve their morphogenetic goals during 
evolution. We did not force or incentivize them to use their bioelectric patterns, in order to observe 
the evolutionary-developmental conditions necessary for the adoption of bioelectricity.  

There are three types of bioelectric patterns in this work: direct, indirect, and the binary trigger. 
They are named based on their relationship with the target morphology. Direct bioelectric patterns 
have voltages that map one to one with cell types. This is not the case for indirect bioelectric patterns. 
Binary triggers have a 5 timestep rest period, followed by a 20 timestep “trigger” period, followed by 
a rest period for the remainder of the simulation. The binary trigger has a homogenous voltage.  

Tadpole organisms only had access to a direct pattern during evolution. And there are two sets 
of French Flag organisms: (1) those who had access to four indirect patterns, or (2) those who had 
access to one binary trigger pattern during evolution. All bioelectric patterns used for the evolutions 
are in Figure 2B. 

3.1.6. Parameters and Code Access 

Genetic algorithm parameters used in this work are the same as in the previous work [85]. All 
code used in this work is freely available at 
https://github.com/sammyhansali/ScaleFreeCognition. Agent-based modeling 
framework, Mesa  [96], was used to visualize organismal development along with dashboards for 
tracking fitness, gap junction connectivity, molecule exchange activity, energy, and more. The 
MultiNEAT package was used to implement ES-HyperNEAT [93]. 

3.2. Material and Method for the Planaria SSRI Experiment 

A clonal strain of Dugesia japonica was kept in Poland Spring Water (Framingham, MA, USA), 
and maintained as in [97] and was starved for >7 days before cutting, a standard method used in this 
model system to reduce variability of data by controlling for the metabolic status of individuals [97].  
To assess the impact of transient fluoxetine treatment on bioelectric states, middle third (trunk) 
fragments from D. japonica were allowed to regenerate in a 2uM Fluoxetine or Sertraline solution for 
3 days, at which point the solution was washed out and the samples were placed in Poland Spring 
water for 1 week (at 13°C to prevent fissioning). The were then photographed and scored for the 
number of heads, and to identify any changes in head morphology (which were not observed). 
Scoring was performed under a Zeiss SV6 dissecting microscope. 

4. Simulation Results for the 3 Types of Bioelectric Patterns to Reach a Target Morphology: 
Direct, Indirect, and the Binary Trigger 

4.1. All Three Types of Bioelectrical Codes Allow the Reaching of Target Morphologies 

To determine whether the artificial organisms learned to navigate the morphospace by following 
the bioelectric information available to them, we trained population of organisms per conditions (20 
organisms for the direct bioelectrical pattern, 20 organisms by patterns for the indirect patterns 
organisms and 20 for the binary trigger organisms). Each species determines the embryonic 
morphology, target morphology, and cell types (Figure 2A) for the developmental task of that trial 
(tadpole for the bioelectrical pattern, French flag for the indirect and binary triggers). Each trial was 
repeated at least 20 times.  

We found that at population level of the direct pattern organisms, the fitness is on average of 91 
(σ=5%) demonstrating a good solution of the morphological task using direct pattern encoding in 
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tadpole organisms (Table 1). In the representative direct pattern example shown in Figure 3A, the 
organism was able to reach the target morphology and achieved a fitness of 91.4 (σ=11.2%) over 20 
developmental runs of the same organism. It displayed an initial burst of molecule exchange activity 
that set the stage for organogenesis. This was preceded by all of its gap junctions opening fully for 
one timestep, before closing off by 80% for the rest of the simulation. By time 50, the location for the 
future eyes, nose, and mouth were demarcated. By time 75 and 100, the resolution of the face 
increases. Activity plateaued over time as fitness increases and error decreases. Notably, the 
organisms reached a perfect fitness of 100, by time 200, demonstrating allostasis and stability 
capabilities seen in the previous similar models [98]. This is a common strategy for direct pattern 
organisms, especially with the gap junction opening fully for 1 timestep before closing off 
dramatically for the rest of the developmental period. Some direct organisms deviated from this 
strategy and instead learn to assign gap junction opening amounts specific to each cell type. 

Table 1. Population statistics for species of direct, indirect and binary trigger organisms. From left 
to right, data is shown for organism fitness in standard conditions and the six key experiments: 
resetting of the bioelectric pattern, morphological robustness, bioelectric (cut and noise) robustness, 
generalizability, and repatterning. Population fitness scores are on a scale of 0-100%, where 0 means 
no one survived and 100 means all organisms achieved the target morphology. 

 

At the population level for the indirect bioelectrical pattern organisms, the fitness scores were: 
83 (σ=3%) for “Half and Half” bioelectrical  pattern, 77 (σ=3%) for “Cross”, 80 (σ=5%), for “Triangles, 
and 78 (σ=4%) for “LL” (Table 1 and Figure 2B for the indirect bioelectrical patterns). Overall, the 
morphological task is harder than with the direct bioelectrical pattern with an average fitness among 
all indirect patterns of 79.5 (Table 1). The representative indirect pattern example (Figure 3B), which 
utilized a “Triangles” pattern, was also able to complete the developmental task. It achieved a 
maximum fitness of 96% during development and a fitness of 80.9 (σ=5.2%) over 20 runs. From 
timestep one onwards, its gap junctions were permanently open and molecule exchange was 
frequent. By the time 25 the blue stripe is clearly demarcated. By 75, the French flag starts to become 
discernable as the red cells colonize the right stripe. Finally at step 100, following several spikes of 
activity, the target morphology is realized with an error of 7 cells in the red stripe.  

Finally, at population level of the binary trigger organisms (Figure 4C), the fitness is on average 
of 81 (σ=5%) (Table 1). In the example displayed in Figure 3C, we found that it solved the French flag 
with a fitness of 80.4 (σ=4.2%) over 20 runs. It immediately focused on isolating the blue stripe and 
white stripe, usually achieving that by the end of the binary trigger, step 25. From then on, its strategy 
was more stochastic. The organism started to have a three-cell wide red stripe on the right side, but 
it was not successful at retaining the red stripe for a long period. But it was enough to reach 90 fitness 
in the developmental run shown in Figure 3C. The cells repeatedly differentiated from white to red 
and red to blue. This strategy essentially continued in the post-developmentary period, causing the 
decay of the tissue by step 200. Generally, there are two types of binary trigger organisms we 
observed. Those that began development before the binary trigger was presented at time 5, and those 
that began at time 5.  
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Thus, organisms with all three types of bioelectric patterns learned to navigate anatomical space 
to develop from early-stage embryo to the adult target morphology using their bioelectrical pattern. 
However, the task is much harder for the indirect patterns organisms and the binary trigger 
compared to the direct pattern organisms given their fitness difference, probably as learning a direct 
mapping is a linear task easier than learning an indirect one, with a non-linear relationship. 

 
Figure 3. All types of bioelectrical patterns allow the reaching of target morphologies. Shown for 
each category are the temporal dynamics of cell states, bioelectrical input, and gap junctions used 
across 200 timesteps, sampled at six timesteps (T=0, 25, 50, 75, 100, and 200). Under that are the 
corresponding fitness vs. timestep chart. Finally, under that is the scales for states, molecules, gap 
junctions, and bioelectricity. A, B, and C are examples that show a single successful example for each 
Direct, Indirect, and Binary Trigger organismal development in standard conditions. A) Direct pattern 
organism example) Activity plateaus over time as fitness increases and error decreases. Notably, the 
organism’s fitness steadily increases after the normal development period. B) Indirect pattern 
organism example. Activity is high in the early stages of development when fitness is low, and error 
is high. By step 108, past the normal developmental period, activity halts and fitness stagnates. By 
step 200 the tissue has started degrading and fitness steadily decreasing. C) Binary trigger organism 
example. Activity is characteristically high from timesteps 5 to 25, when the binary trigger pattern is 
present. Gap junctions immediately open in the first-time step. Like some other artificial organisms, 
fitness steadily decreases after the normal development period. 
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Figure 4. Population-level fitness score distributions for the various experiments from Table 1. 
Direct histograms have a population size of n=20, indirect histograms aggregate the fitness scores 
from all four indirect patterns (each has n=20) for a total of n=80, and binary trigger organisms have 
a total of n=20. 
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4.2. Regulative Morphogenesis Depends Fully on the Direct Pattern, Partially for the Indirect Pattern, and 
Depends on the Duration of the Pattern for the Binary Trigger 

The digital organisms can reach their anatomical goals via high-level bioelectric patterning 
information. However, we did not specifically reward for utilization of bioelectricity data because we 
wanted to understand the developmental conditions which may have caused cellular collectives, over 
the course of evolution, to co-opt spatial gradients of membrane voltages for the purpose of 
morphogenesis. Without forcing the adoption of bioelectricity, would artificial organisms learn on 
their own to utilize bioelectric patterns to traverse anatomical space, or rely on the other ANN inputs 
(energy, molecules, cell type)? 

In order to answer this question, we devised the “Resetting Bioelectricity” experiment 
(Supplementary Material, Figure S2). We reset the native bioelectric pattern of artificial embryos to a 
homogenously hyperpolarized bioelectric pattern (in every step, except for the binary trigger, where 
each cell has a membrane voltage of -100 mV, at timestep zero. This was done half-way during a 
simulation as a loss-of-function experiment to determine whether or not they were relying on 
bioelectrical mechanisms for their effective morphogenetic performance. This pattern was selected 
because it shares no resemblance to any of the developmental bioelectric patterns used for direct and 
indirect pattern organisms (Figure 2B). Therefore, if an organism relied on its native bioelectric 
pattern for correct anatomical development, this novel pattern should disrupt that. This “Resetting 
Bioelectricity” experiment was modified for binary trigger organisms, as it is already a homogeneous 
pattern, in order to understand their temporal dependence on the binary trigger duration, to know if 
they are really dependent on a presentation of the binary trigger to activate the downstream 
pathways to resolve the morphogenetic task. The native bioelectric trigger lasts for 20 timesteps 
during development. So, for each organism we reset their bioelectric pattern for 1 timestep, 2 
timesteps, all the way up to 20 timesteps. Then we observed how changing the duration of the binary 
trigger affected fitness (Supplemental Material, Figure S3).  

We found that resetting bioelectricity inhibited correct development, but the impact varies with 
the different types of pattern. Indeed, by comparing reset scores between direct and indirect 
organisms, the direct organisms have population scores of 0 (σ=0) while indirect organisms don’t fail 
completely on the morphogenetic task: they have higher scores but still low in terms of development 
and with a lot of variance (population fitness score of 31 (σ=24%) for “Half and Half” pattern, 51 
(σ=16%) for “Cross”, 48 (σ=15%) for “Triangles and 52 (σ=17%) for “LL” (Table 1). The high variance 
in resetting scores for indirect organisms supports the fact that different indirect organisms have 
different levels of dependence on bioelectricity for morphogenesis. Therefore, organisms with the 
direct patterns (Figure 4D) are fully dependent on bioelectricity for survival, but indirect types have 
less dependence.  

We also found that binary trigger organisms varied in their bioelectrical dependance (see Figure 
4F and Supplemental Material, Figure S3B-C). Some required only 1 timestep of their binary trigger 
in order to reach a fitness comparable to if they had the full 20 timestep trigger. For others, 5, 10, or 
15 timesteps is necessary. Some did not require the bioelectric pattern at all to reach the target 
morphology. This is shown in Figure S3A, where resetting the whole binary trigger does not affect 
60% of the organisms, while the rest either die or develop incorrectly. At the population level, when 
removing the entire binary trigger (all 20 timesteps) the fitness is on average of 58 (σ=27%). This 
demonstrates how resetting the full binary trigger can severely inhibits the ability for binary trigger 
organisms to resolve the French Flag but the high variance shows too that some organisms in the 
population don’t rely fully on it to resolve the morphogenetic task (Table 1). The distribution of 
fitness scores for binary trigger organisms undergoing full resetting (Figure 4F) shows a bimodal 
distribution. The majority of the population didn’t survive the resetting of the pattern, while the 
others can reach up to fitness=80, showing a low dependency on the bioelectrical pattern.  

Direct, indirect, and binary trigger pattern organism examples shown in Figure 5A, 5B, and 5C, 
respectively, achieved fitness of 0 (σ=0%), 61.4 (σ=3.84%), and 43.6 (σ=2.29%) over 20 runs after 
resetting bioelectricity. Given that these specific organisms have baseline fitness of 98, 83%, and 76% 
without any perturbation, respectively, these organisms rely on their native bioelectric patterns for 
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development. Generally, what occurs for these types of organisms that have their native patterns 
reset is the following. First, they show rapid cellular differentiation. This is what is seen in practice – 
cell collectives typically undergo global, rapid, and stochastic cellular differentiation. Since cellular 
differentiation has a metabolic cost in our model, this accelerates the demise of the organism in a 
positive feedback loop. 

 
Figure 5. Morphogenetic behavior depends on the bioelectrical patterns and the duration of the binary 
trigger (Resetting experiment). Shown for each category are the temporal dynamics of cell states, 
molecules, and gap junctions used across 200 timesteps, sampled at six timesteps (T=0, 25, 50, 75, 100, 
and 200). Under that are the corresponding fitness vs. timestep chart. Finally, under that is the scales 
for states, molecules, gap junctions, and bioelectricity. A, B, and C are examples that show a single 
example for each Direct, Indirect, and Binary Trigger organismal development under the “Resetting 
Bioelectricity” experiment. A) Direct pattern organism example. After resetting the bioelectric pattern, 
the organism dies at timestep 76 due to its inability to perform anatomical homeostasis. Throughout 
development, cells continuously and stochastically differentiate without forming useful structures - 
degradation. (B) Indirect pattern organism example. After resetting the bioelectric pattern, the 
organism dies around timestep 69 due to its inability to perform anatomical homeostasis. Cells 
continuously and stochastically differentiate without forming useful structures. By step 90, fitness 
decreases as the organism slowly dies. C) Binary trigger organism example. The entire 20 timestep 
binary trigger was reset. The organism stayed in the shown configuration inadequate for survival for 
nearly its entire lifespan, which ended around timestep 118. 
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The mapping between indirect and binary trigger patterns with their downstream morphologies 
is complex, as opposed to the linear mapping of direct organisms. As shown in the population 
statistics of indirect and binary trigger organisms, some organisms with non-linear goal-encoded 
pattern (indirect and binary trigger) learn to rely less on their membrane voltages for development 
and may rely on other things, like local information or the starting state of the tissue, or a memory of 
the goal encoded in the neural networks of the cells.  

Therefore, we conclude that organisms with direct patterns are fully dependent on the 
bioelectric pattern (they perished immediately upon removal), while those with indirect patterns and 
binary triggers can evolve to different degrees of robustness to loss of bioelectrical information, to 
differing extents based on the specific pattern and the duration of the binary trigger.  

4.3. An Emergent Robustness to Changes in Initial States Configurations for the Direct Pattern  

Previously we showed that artificial organisms rely on bioelectricity to reach their 
morphogenetic setpoints (to various degrees depending on their type of bioelectric pattern) but how 
robust are these developmental processes to external perturbations? Indeed, did organisms learn to 
map the native bioelectric pattern to the target morphology, so that they may reach it from various 
initial states? Do they show developmental robustness [98,99]? 

To address this question, we devised the “Morphological Robustness” experiment 
(Supplementary Material, Figure S4), in which embryos were tasked with developing into the correct 
target morphology despite starting off in different morphological states. We created 20 new starting 
morphologies for each organism (Supplementary Material, Figure S5) with direct and indirect 
bioelectrical patterns. Each organism was evaluated on these 20 developmental cycles for their 
morphological robustness. We didn’t apply this experiment to the organisms with a binary trigger as 
we want to understand the mapping between the goal-encoded bioelectrical pattern and the 
morphological initial condition, and the binary trigger is more a higher level bioelectrically encoded 
switch activating the memory of the cellular network to reach a specific morphology. 

We discovered that at the population level, the direct pattern organisms were morphologically 
robust, by reaching 65 (σ=16%) of fitness score on average, with the 20 new starting morphologies 
(Table 1). We also observed that several organisms even reached more than 90 of fitness score after 
perturbation (Figure 4G). The representative example of the organism with direct pattern (see Figure 
6A) scored a fitness of 97.7 (σ=3.00%) over 20 runs. The target morphology was almost complete by 
time 75, which is 25 timesteps earlier than the baseline (Figure 3A). The common process by which 
the organisms reach the anatomical setpoint from a new starting point is identical to the framework 
laid out in (Section 3.1).  

Indirect organisms were not morphologically robust (Figure 4H), reaching at population level a 
fitness score of 20 (σ=12%) for “Half and Half” indirect pattern, 6 (σ=11%) for “Cross”’, 2 (σ=4%) for 
“Triangles” and 1 (σ=2%) for “LL” for a general average of 7.25 of fitness score for organisms with 
indirect pattern (Table 1). The representative example of the indirect pattern organisms, utilizing the 
“Half and Half” pattern and a starting morphology biased towards white and blue cells, achieved a 
fitness of 31.7 (σ=7.72%) over 20 runs (Figure 6B).  By around timestep 25, the organism reached its 
peak fitness level and the morphology remained mostly unchanged until death. No coherent stripe 
was formed. Activity ceased and the organism died after timestep 110. 

Thus, we conclude that direct pattern organisms show emergent morphological robustness to 
external morphological reconfiguration as a byproduct of their linear mappings between voltage 
patterning and target anatomy. Indirect pattern organisms displayed almost non-existent 
morphological robustness to changes in initial states configurations in our experiment. 
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Figure 6. An emergent morphological robustness for the direct pattern (Morphological Robustness 
Experiment).  Shown for each category are the temporal dynamics of cell states, molecules, and gap 
junctions used across 200 timesteps, sampled at six timesteps (T=0, 25, 50, 75, 100, and 200). Under 
that are the corresponding fitness vs. timestep chart. Finally, under that is the scales for states, 
molecules, gap junctions, and bioelectricity. A and B are examples that show a single successful 
example for each Direct and Indirect organismal development under the “Morphological Robustness” 
experiment. A) Direct pattern organism example. Notice that the starting morphology is scrambled 
compared to the normal starting condition. After scrambling the starting morphology, the organism 
reaches a fitness of 100 (without scrambling it reaches a fitness of 98) Activity follows the same trend 
as in Figure 3A. By step 100, the target morphology is completely resolved. The morphology is 
maintained until time 200. B) Indirect pattern organism example. After scrambling the starting 
morphology, the organism reaches a fitness of 31.7 (without scrambling it reaches a fitness of 87). 
Activity is high in the early stages of development when fitness is low, and error is high. Fitness peaks 
around 60 at time 25, but then gradually decreases as morphological degradation occurs. 
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4.4. Emergent Robustness for the Organisms with Indirect Patterns to Bioelectrical Perturbation 

We investigated earlier how completely resetting the bioelectric pattern inhibits correct 
development of the organisms with direct patterns and with different extent with organisms with 
indirect pattern. Would it be possible that organisms rely only on specific part of the indirect 
bioelectrical pattern? What about smaller perturbation, such as resetting half of the pattern or adding 
artificial noise to the whole pattern? To address this question, we devised the “Bioelectric 
Robustness” experiments (Supplementary Material, Figure S6). We focused this experiment solely on 
organisms with indirect patterns, due to their lack of morphological robustness and the possibility 
that the key to their robustness lies in the nonlinear dependencies they learned from their bioelectric 
patterns. Also, the direct bioelectrical pattern encodes a direct mapping with the goal to reach in the 
morphospace and would not be expected to be robust to its alteration.  

We evaluated the resilience of the indirect pattern organisms to bioelectric perturbations by 
either: i) resetting half of their bioelectrical patterns (by hyperpolarizing them to -100mV, similar to 
section 3.2) ii) introducing noise (by polarizing cells by a random choice of -20, -10, -5, 0, 5, 10, or 
20mV). Each organism was evaluated on these two developmental cycles for their bioelectric 
robustness. 

We found that there is large variance at population level, which has “Cut” robustness fitness 
scores of 31 (σ=31%) for indirect pattern “Half and Half”, 42 (σ=29%) for “Cross”’, 43 (σ=32%) for 
“Triangles” and 40 (σ=32%) for “LL” for an average fitness of 39 of fitness score for organisms with 
indirect pattern (Table 1). “Noise” population robustness fitness scores also had high variance, with 
a score of 47 (σ=26) for “Half and Half”, 43 (σ=24%) for “Cross”, 41 (σ=27) for “Triangles”, and 44 
(σ=27%) for “LL” for an average fitness of 43.75. It appears that, the population of indirect organisms 
display a bimodal distribution for fitness scores under the “Cut” and “Noise” robustness experiments 
(Figure 4I and Figure 4J). We have two groups in each condition, one composed of organisms that 
didn’t survive the bioelectrical perturbation and another that presented emergent robustness during 
evolution.  

The representative example of the survival group of the organisms with the “Triangles” indirect 
pattern (Figure 7B) achieved a fitness of 82.9 (σ=7.16%) and a fitness of 84.4 (σ=6.89%) over 20 runs 
for the cut and noise experiments, respectively. “Half and Half” organisms outperformed other 
indirect populations in Noise Robustness, but underperformed in Cut Robustness. The former may 
be due to the relatively low structural complexity of “Half and Half” compared to the other indirect 
patterns. The latter is easy to understand, because the “Half and Half” contains half of its information 
on each side, since both left and right halves have different polarization levels. Therefore, we 
conclude that indirect bioelectric patterns have emergent robustness to bioelectric perturbations.  
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Figure 7. Relative bioelectric robustness for the organisms with indirect patterns to bioelectrical 
perturbation (Bioelectric Robustness Experiment). Shown for each category are the temporal 
dynamics of cell states, molecules, and gap junctions used across 200 timesteps, sampled at six 
timesteps (T=0, 25, 50, 75, 100, and 200). Under that are the corresponding fitness vs. timestep chart. 
Finally, under that is the scales for states, molecules, gap junctions, and bioelectricity. A, and B are 
examples that show a single example for each Indirect (cut in half) and Indirect (noise) organismal 
development under the “Bioelectric Robustness” experiment A) Indirect pattern organism for the 
“cut” bioelectrical robustness experiment. After cutting the bioelectric pattern, the organism reaches 
a fitness of 89 (without cutting it reaches a fitness of 92). By step 100, activity has ceased and fitness 
declines. The red stripe is incomplete, and the white stripe has a few extra red cells. B) Indirect pattern 
organism for the “nose” bioelectrical robustness experiment. After introducing noise in the 
bioelectrical pattern, the organism reaches a maximum fitness of 96 (without noise it reaches a 
maximum fitness of 96). By step 100, activity has ceased and fitness plateaus. The target morphology 
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is legible, and the white stripe has a few extra red cells. The tissue maintains its state well until 
timestep 200. 

4.5. An Emergent Generalizability Competency to New Bioelectrical Pattern for the Direct and Indirect 
Patterns Organisms  

Animals can be anatomically altered by reprogramming their developmental bioelectric 
software [1], such as: regenerating planaria induced to grow two heads or no heads [100] or heads of 
other species [56,65], or X. laevis developing functional ectopic eyes in aberrant locations [101]. We 
wanted to know if we could reprogram organisms to reach new target morphologies by simply 
changing their native bioelectric pattern at initialization. Can they generalize past the relationship 
between their native bioelectrical pattern and target morphologies? 

To answer that question, we devised the “Generalizability” experiment (Supplementary 
Material, Figure S7). For each organism, we created 3 new bioelectric patterns by rotating their native 
pattern by 90°, 180°, and 270° (relative to their initial orientation).  Each organism was initialized 
with these novel patterns after they have been evolved with the standard parameters and patterns 
and then evaluated for their generalizability. 

At the population level, direct pattern organisms reached a fitness score of 83 (σ=9%). While 
indirect organisms were less successful with generalization, they reached at population level a fitness 
score of 57 (σ=20%) for indirect pattern “Half and Half”, 27 (σ=7%) for “Cross”’, 24 (σ=2%) for 
“Triangles” and 23 (σ=3%) for “LL” for a general average of 32.75 of fitness score for organisms with 
indirect pattern (Table 1). This difference in performance is also reflected in the population level 
fitness distributions for generalizability, shown in Figure 4K and Figure 4L. Direct organisms all 
survived development (Figure 4K), while there seems to be two classes of indirect organisms: those 
that die (the majority of the organisms) and those that are moderate to high for generalizing and are 
successful at development, mainly with ‘Half and Half” pattern (Figure 4L).  

The representative examples of the direct pattern organism and indirect pattern organism 
(utilizing a “Half and Half” pattern) shown in Figure 8A and 8B, have fitness scores of 92.8 (σ=6.93%) 
and of 79.4 (σ=16.1%) over 20 runs, respectively. The strategy that organisms followed was almost 
the same as their original strategies in standard conditions. 

Thus, we observed that the organisms learned a larger mapping between the bioelectrical 
patterns and the target morphology. Through experiments comparing normal development to 
outcomes after bioelectric pattern rotation, we found that organisms with direct and indirect 
bioelectrical patterns adapted well and show emergent generalizability competency to new 
bioelectrical patterns.  
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Figure 8. The organisms learned a mapping between the bioelectrical patterns and the target morphology 
(Generalizability Experiment). Shown for each category are the temporal dynamics of cell states, molecules, 
and gap junctions used across 200 timesteps, sampled at six timesteps (T=0, 25, 50, 75, 100, and 200). Under 
that are the corresponding fitness vs. timestep chart. Finally, under that is the scales for states, molecules, 
gap junctions, and bioelectricity. A) Direct pattern example. After rotating the bioelectric pattern, the 
organism reaches a maximum fitness of 96 (without rotation it reaches a fitness of 98). Activity follows the 
same trend as in Figure 3A. By step 100, the target morphology is completely resolved. Then begins the 
gradual degradation of the target morphology until the organism dies at time 185. The target morphology 
looks close to the expectation – the original target morphology rotated 90 degrees counter-clockwise. B) 
Indirect pattern example. The indirect bioelectric pattern has also been rotated at T=0, this time by 180 
degrees. After rotating the bioelectric pattern, the organism reaches a maximum fitness of 90 (without 
rotation it reaches a fitness of 90). The target morphology looks close to the expectation – the original target 
morphology rotated by 180 degrees. 
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4.6. An Emergent Repatterning Capabilities for Direct Pattern Organisms in Post-Developmental Phase 

We showed in the previous section that artificial embryos could be reprogrammed to generalize 
to novel target morphologies that had never been learned in their developmental cycles. A similar 
biological phenomenon involving morphological remodeling is that of repatterning [102]. This 
involves the reorganization and reconfiguring of biological tissue to achieve a new outcome, such as 
the remodeling of adult epibranchials of metamorphosing species of lungless salamanders during 
development [103] or wound healing and blastema formation during Drosophila larvae imaginal disk 
regeneration [104]. In the context of our simulation, we define repatterning as the ability for an 
organism, after the conclusion of its 100 timestep developmental period, to remodel its cells to reach 
a new morphological state given a novel bioelectric pattern. Previous work [85] showed that artificial 
organisms are capable of morphological allostasis in this post-developmental period. This ability to 
maintain anatomical stability with dynamic responses after development was not directly 
programmed in by the modeler and is therefore emergent.  If artificial organisms during the post-
developmental period have the emergent ability to maintain their form, do they also have the 
emergent ability to create new forms (repatterning)? Can we induce them to repattern themselves 
into new morphologies by only changing their bioelectric patterns during the developmental phase? 

To answer that question, we devised the “Repatterning” experiment for direct and indirect 
patterns organisms (Supplementary Material, Figure S8). This experiment is identical to the 
“Generalizability” experiment (Section 3.4) except each organism was allowed to develop normally 
until timestep 100 when these novel patterns replaced the native ones. The energy levels for these 
organisms were reset back to maximum at the start of the repatterning period as for most of the 
organisms were exhausted after development. They were then evaluated at timestep 200 for their 
repatterning ability. 

We found that at populations level, for direct bioelectrical pattern organisms, their fitness was 
22% (σ=33%), a stark drop from the 83 (σ=9%) population average for generalizability (Table 1). The 
high variance in outcomes for organisms repatterning means that some organisms start to repattern, 
while others cannot. Indirect organisms also had low repatterning capabilities, with an average 
fitness of 13 (σ=14%) for the entire population of Half/Half indirect pattern organisms, 7 (σ=11%) for 
“Cross”’, 1 (σ=3%)  for “Triangles” and 0 (σ=0%) for “LL” for an general average of 5.25 of fitness 
score for all the organisms with indirect pattern (Table 1). Looking at the population level fitness 
histograms, we found that even if the entire direct pattern population tended to have low fitness 
scores, they contained a few organisms that showed some level of competency at repatterning (as 
displayed in the histogram, Figure 4M), such as in Figure 9A. However, overall, indirect organisms 
performed poorly with no organisms that can reach a fitness score over 50 after 100 steps, meaning a 
0% survival rate (Figure 4N).  

We observed that successful repatterning ability for direct pattern organisms follow the general 
behavior of previous experiments with direct pattern organisms typically more capable than the 
indirect pattern ones. The direct pattern organism and indirect pattern organism (utilizing a “Half 
and Half” pattern) examples are shown in Figure 9A and 9B, scoring a 200-timestep fitness of 83.0 
(σ=7.02%) and of 54.3 (σ=2.96%) over 20 runs, respectively. Both patterns are rotated 90 degrees 
counterclockwise at time 100, and fitness was now evaluated at time 200 instead of 100. 

Thus, we can conclude that artificial organisms with direct patterns have the emergent ability to 
repattern themselves after evolutionary training and alter their adult morphology in response to a 
changed bioelectric pattern. Conversely, those with indirect patterns don’t exhibit any repatterning 
capability (Figure 4N). 
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Figure 9. Emergent repatterning competency for the direct pattern organisms in post-developmental 
phase (Repatterning experiment). Shown for each category are the temporal dynamics of cell states, 
molecules, and gap junctions used across 200 timesteps, sampled at six timesteps (T=0, 25, 50, 75, 100, 
and 200). Under that are the corresponding fitness vs. timestep chart. Finally, under that is the scales 
for states, molecules, gap junctions, and bioelectricity A) Direct pattern organism example. After 
rotating the bioelectric pattern 90 degrees counterclockwise at timestep 100, the organism reaches a 
maximum fitness of 91 at time 200 (without rotation it reaches a fitness of 99 at 200). This is not the 
organism shown as the one in Figure 14, as the previous organism could not perform repatterning, 
but this one could. For this organism, its gap junction openings are highly correlated with cell type. 
At 100 the upright morphology is complete, but the new rotated target morphology and bioelectric 
pattern are introduced. Consequently, fitness sharply plummets but activity stays constant. The target 
state at timestep 200 has a fitness of 91, close to the desired rotated target state. B) Indirect pattern 
organism example. After rotating the bioelectric pattern (top-right arrow), the organism reaches a 
fitness of 92 (without cutting it reaches a fitness of 92). At 100 the French Flag is complete, but the 
new rotated target morphology and bioelectric pattern are introduced. Consequently, activity 
increases, and fitness sharply plummets. The target state at timestep 200 has a fitness of 55, it is more 
than halfway there to reaching the rotated target state. 

5. Selective Serotonin Reuptake Inhibitors (SSRI) Simulation and Experimental Results 

Selective serotonin reuptake inhibitors (SSRIs) are a class of drugs prescribed for cases of 
depression and anxiety [105,106]. They mainly target a component of the serotonin signaling system, 
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the serotonin transporter, SERT. Serotonin signaling has previously been implicated as a component 
of bioelectric circuits [105]. Some have suggested that SSRIs target bioelectricity in the context of 
developmental defects [105,107,108]. SSRIs act on the serotonin signaling system, which has been 
suggested to be involved in processing rewards and punishments in the brain  [109,110]. SSRIs can 
also function to change membrane voltage of neural and non-neural cells  [105,111,112]. 

As found above, artificial organisms learned a mapping between target morphology and their 
native bioelectric pattern that is robust and amenable to generalization and repatterning. Does that 
mapping start to break down under the influence of SSRI-like conditions? Does that lead to 
morphological defects in artificial organisms as seen in biological organisms [108]? To answer these 
questions, we simulated SSRI exposure to explore its effects on the development of artificial 
organisms and made predictions we verified experimentally. 

5.1. Simulated SSRI Induced Loss of Regenerative Precision and a Bistable Morphogenetic Process 

In order to simulate an SSRI exposure experiment, we started by evolving organisms that would 
pursue the French Flag morphology. These indirect pattern organisms have a homogenously 
depolarized bioelectric pattern (as shown in Figure 10) instead of the bioelectric patterns used for the 
other direct organisms (as shown in Figure 2B). This new pattern resembles the “Rest” pattern shown 
for binary trigger organisms (Figure 2B). Even so, these organisms are not binary trigger organisms 
because they are only exposed to one pattern for their entire developmental period (as opposed to 
binary trigger organisms which alternate between two patterns). 

For those reasons, we selected a homogenously polarized bioelectric pattern (which is a type of 
indirect pattern). Next, we selected 20 of these organisms that had a fitness of 90 or more on the given 
task. At the population level, the fitness for this group was 92.4 (σ=2.1%) (Supplemental Material, 
Figure S9A). They also showed dependency on bioelectricity (Section 3.2). Then, we altered their 
cellular reward machinery by eliminating energy loss at each step similarly to SSRI exposure 
similarly to [109,110]. Thus, cells may no longer gain top-down instructive information on 
morphological error. We also perturbed the voltage of 1, 2, 5, and 10 random cells at once, by 
hyperpolarizing them anywhere from -5, -10, or -30 mV, simulating the weakening of cells’ abilities 
to correctly interpret the organismal bioelectric pattern under SSRI [105,111,112]. 

This simulated experiment led to two discoveries: global morphological degradation and a 
bistable development. Global morphological degradation, in a biological context, can be thought of 
as the inability for a cellular collective to determine how to differentiate to reach the target 
morphology. This state is characterized by a significant deviation from the target morphology and 
frequent random, undirected differentiation of the cells, or a loss of precision in organisms’ normally 
quite tight ability to reach the same, invariant pattern. Multistability in dynamical systems theory is 
“the ability of a system to achieve multiple steady states under the same external conditions” [113]. 
In a developmental biology context, this would equate to an organism that can become one of 
multiple target anatomies, under the same environment. There are many animals that exhibit this 
behavior under different contexts, such as planaria during regeneration [114].  
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Figure 10. SSRI exposure leads to a bistable development process. To see if SSRI exposure causes 
monostable organisms to become bistable or multistable and pursue multiple developmental attractor 
states, we simulated SSRI exposure on French Flag organisms with homogenously depolarized 
patterns and perturbed the bioelectric pattern of several cells at once (A) No SSRI exposure. The 
organism reaches the wild type French Flag target morphology, 100% of the time. In this instance, 
there is some error on the white and red stripes but the French flag is still visible. (B) SSRI exposure 
with random perturbations on the left stripe. Applying SSRI exposure to the same organism (via 
changing the reward machinery) and perturbing 5 random cells from the left stripe of the organism 
by hyperpolarization of -30 mV causes a bistable developmental process to occur. This causes there 
to be a 67% chance of forming the wild type morphology (with higher resolution, likely due to the 
removal of energy loss) and a 33% chance of forming a new, mutant type morphology. This was 
measured over 100 runs. (C) SSRI exposure with random perturbations. Adding 5 more -30 mV 
perturbations to the same SSRI exposed organism, except no longer localized to the left stripe, causes 
global morphological degradation and a return to a unistable developmental process. The fully 
resolved French flag is no longer apparent – instead the red stripe is replaced by a white stripe with 
blue and red cells scattered. During the simulation, there are rapid cellular differentiations indicative 
of degradation. 

5.1.1. SSRI Exposure Leads to Global Morphological 

By simulating SSRI exposure as defined above with the alteration of the cellular reward 
mechanisms (via removing energy loss) and bioelectric states (via randomized voltage perturbations 
of cells), we found that the number of cellular voltage perturbations was the key factor that 
determined whether global morphological degradation (loss of morphogenetic precision) occurred 
or not (Figure 10). Hyperpolarizing only one cell did little to affect development. However, 
hyperpolarizing two cells was enough to begin to see a disruption of anatomical homeostasis. 
Development would typically proceed along a similar trajectory as normal, however there would be 
a slight increase in rapid “back-and-forth” cellular differentiations. Sometimes, the target 
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morphology would be worse due to misplaced cells and incomplete structures. Moreover, the global 
morphological degradation became most apparent when five or more perturbations were introduced 
to the SSRI-exposed organism. Depending on their placement, a general weakening of anatomical 
homeostasis could occur (Figure 10C), or the birth of a bistable developmental process (Figure 10B).  

A factor that impacted the occurrence of global morphological degradation was the location of 
perturbations. As discussed in depth in the next section, on rare occasions the specific cells that 
become hyperpolarized can be the difference between a benign perturbation that has seemingly no 
effect on morphogenesis, and an alternate developmental pathway. That factor usually impacts 
degradation in concert with another factor, the order of cellular activations during development. 
Interestingly, an insignificant factor was the magnitude of the cellular hyperpolarizations. For any 
given organism, hyperpolarizing an identical set of cells by -5, -10, or -30 mV had no distinguishably 
different effect. This could be because the organism and its ancestors were only exposed to one 
voltage value (0 mV) throughout their lifecycles, thus they never learned to distinguish between 
different voltage states. 

Based off these observations, we designed a test to quantify morphological degradation by 
comparing the fitness of these 20 organisms before and after SSRI exposure with perturbations 
(Supplemental Material, Figure S9). In this experiment, we exposed each organism to SSRI and 
perturbed 5 random cells, as described above. We did this three times for each organism and 
averaged the fitness values to get a mean fitness score for each organism. At the population level, the 
fitness for these organisms dropped from 92.4 (σ=2.1%) to 54.8 (σ=13.3%) (Supplemental Material, 
Figure S9). 

By altering cellular reward mechanisms (via removing energy loss) and bioelectric states (via 
randomized voltage perturbations of cells) similarly to SSRI exposure, we induced widespread 
morphological degradation in our model organisms similarly to results reported in biological 
experiments [108]. 

5.1.2. SSRI Exposure Leads to a Bistable Developmental Process 

We also found that SSRI simulated exposure leads to leads to a multistable developmental 
process in a one representative organism (Figure 10). Under normal conditions, this organism reaches 
the French Flag morphology with a fitness of 74.5 (σ=15.1%), as shown in Figure 10A. When this 
organism was subjected to random perturbations of 1 cell at a time, no notable degradation or change 
in stability ever occurred. When multiple cells were perturbed at random, there was noticeable 
degradation but no multistability. However, we observed that when only the cells of the left stripe 
were perturbed, regardless of the amount of hyperpolarization for each cell or the number of cells 
that were hyperpolarized, the organism exhibited a bistable developmental process. Over 100 runs 
on the configuration shown in 10B, this organism had a 67% probability of developing into the wild 
type expected morphology, with the remaining 33% of times resulting in an entirely distinct form 
(Figure 10B). In this bistable mode, the organism had a fitness of 91.4 (σ=11.5%). Interestingly, when 
it solved the French Flag it always did so with near perfection, getting 98-100 fitness. When it pursued 
the mutant type morphology, the fitness was closer to 55-66. This new mutant type of morphology 
had no red stripe, a central 1-cell thick blue and red stripe at time 100, and a central red dot or dots 
at time 200 that replaced the blue stripe.  

This bistable phenomenon quickly disappeared as soon as a cell was perturbed outside of the 
left stripe area (Figure 10C). Once again, the number of perturbations and degree of 
hyperpolarization does not matter – as soon as a cell outside of the blue stripe is perturbed on the 
bioelectrical pattern, there is morphological degradation. This leads to a French flag-like morphology, 
except it is typically missing its red stripe and with many actively differentiating cells in the red stripe 
area (Figure 10C). The fitness dropped to 63.6 (σ=0.82%) when perturbing outside of the left stripe. 
As indicated by the small deviation, this effect reliably reproduced the same morphologically 
decoherent morphology shown in Figure 10C. 

We can conclude that this bistable phenomenon indicates that SSRI-like exposure paired with 
specific bioelectric modifications can induce a bifurcation in developmental pathways, leading to 
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alternative stable morphologies. This connects to work done in tadpoles showing how depolarization 
of as little as three cells could cause an alternate, large-scale developmental pathway to emerge [115]. 
The complexity of bioelectric influences on development suggests that SSRI exposure by disrupting 
the top-down information related to the developmental reward may unlock latent developmental 
trajectories, resulting in divergent morphological outcomes under identical conditions. This finding 
is surprising as changing only a few cells via induced hyperpolarization causes a multi-stable 
developmental trajectory to emerge. Therefore, we decided to test experimentally this prediction. 

5.2. SSRI Experimental Results: Regenerating Planaria in Fluoxetine or Sertraline 

Our model made a prediction about the loss of morphogenetic precision resulting from loss of 
stress-induced motivation driving the anatomical homeostatic loop. We sought to test this in vivo, 
using a widely available class of drugs that are used for reducing anxiety in humans and other 
animals [116–122] and that has previously been tested in planaria in toxicology [123,124] and 
parasitology [125] contexts: the serotonin reuptake inhibitors Fluoxetine and Sertraline. Specifically, 
these SSRIs have been studied with respect to their effects on reducing behavioral motivation and the 
drive for specific outcomes [126–128]. Applying either drug to middle fragments of planarians 
(Figure 11A) resulted in a mix of 0-, 1-, and 2-headed regenerates (Figure 11B, quantified in 11C). 
Compared to exclusively 1-headed animals in control conditions (n>500), cohorts treated with 
Sertraline or Fluoxetine exhibited respectively 31% and 17% 0-headed animals, and 4% and 8% 2-
headed animals (n=90, n=155 respectively). This effect was significant to p<0.01 (2.79×10-36), from 
which we conclude that serotonin reuptake inhibitors reduce the precision (but do not induce one 
consistent anatomical fate) of regeneration. 

 
Figure 11. Effects of SSRI on regenerative morphology in planaria.  Middle trunk fragments (A) 
exposed to Fluoxetine or Sertraline during the first 3 days of regeneration give rise to animals with 1-
, 0-, or 2-headed anatomies (B, red arrowheads point to heads), in contrast with the extremely reliable 
1-headed outcome in controls (quantification in C). 

6. Discussion 

This study utilized evolutionary simulations to explore the role of bioelectric signals in guiding 
morphological outcomes during development. Although it is known that bioelectric patterns are 
crucial for pattern formation and can be classified into three types—direct encoding, indirect 
encoding, and binary trigger—there is a lack of computational tools to understand how these patterns 
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evolve and confer advantages. To address these gaps, we developed a neural cellular automaton 
(NCA) and used evolutionary algorithms to optimize these models for reliable, regulative 
morphogenesis driven by the three types of bioelectric patterns. Our findings are as follows, we 
found that: (1) All types of bioelectrical codes allow the reaching of target morphologies (2) 
Morphogenetic behavior depends on the bioelectrical patterns and the duration of the binary trigger 
(3) An emergent morphological robustness for the direct pattern (4) A relative emergent bioelectric 
robustness for the organisms with indirect patterns to bioelectrical perturbation (5) An emergent 
generalizability competency to new bioelectrical pattern for the direct and indirect patterns 
organisms (6) Emergent repatterning competency for the direct pattern organisms in post-
developmental-phase. We also developed a selective serotonin reuptake inhibitors simulation, which 
diminished the ability of artificial embryos to correctly interpret bioelectric patterns due to an altered 
organismal reward machinery, leading to higher variance of developmental outcomes (loss of 
precision), global morphological degradation, and induced in some organisms anatomical bistability. 
These computational findings have been validated by data collected from planaria SSRI exposure. 
Additionally, we simulated the effects of selective serotonin reuptake inhibitors (SSRIs) on artificial 
embryos, observing that these inhibitors impaired the correct interpretation of bioelectric patterns. 
This resulted in increased variance in developmental outcomes, global morphological degradation, 
and bistability in the target anatomies in some artificial organisms. This computational prediction 
was validated by experimental data from planaria exposed to SSRIs. 

In the context of somatic pattern memories and bioelectric circuits underlying regeneration, 
propose that bistability enables stochastic outcomes in the restoration of correct large-scale anatomies 
from diverse initial states. This is achieved through the exploitation of bioelectric encoding of 
distributed goal states, akin to how the brain utilizes memory to achieve specific outcomes [114]. The 
concept of bistability is not only relevant in the context of regeneration and developmental biology 
but also extends to neuroscience. It suggests that bistability plays a role in cognitive processes and 
memory formation, drawing parallels between bioelectric circuits in regeneration and neural 
networks involved in memory, representation, and perceptual bistability [129]. This highlights the 
interconnectedness of bistability across different biological systems, emphasizing its significance in 
understanding complex biological phenomena. Moreover, the utilization of bistability in bioelectric 
circuits underscores the dynamic nature of cellular processes, similarly to neural processes, where 
stability and plasticity coexist to drive cellular differentiation and specialized functions in 
multicellular organisms [130].  

We found several differences between organisms with direct and indirect bioelectrical pattern. 
Direct pattern organisms have a good morphological robustness to changes in the initial conditions 
while indirect pattern organisms in our simulation didn’t develop this capability fully. However, 
these organisms showed an emergent robustness to bioelectric perturbations while direct pattern 
organisms by definition don’t have this competency as the direct mapping between bioelectricity and 
the anatomy implies that any change in the bioelectrical pattern will result in a developmental defect. 
This is maybe why evolution co-opted indirect bioelectrical patterns. Indeed, organisms solely 
relying on direct pattern are disrupted more easily as organisms learned a direct mapping, any 
change in the goal-encoded direct pattern would lead to developmental defect, whereas indirect 
pattern may allow for the encoding of redundancy of the information necessary to reach the 
morphological goal. Evolutionarily, indirect pattern organisms may have a better fitness overall as 
they have such a robustness. In addition, learning an indirect mapping between morphology and an 
indirect bioelectrical pattern may allow the exploration of a larger morphospace than the one encoded 
in a direct one. It allows for more adaptability as an indirect mapping can represent more 
morphologies than a direct one.  

Evolutionarily, organisms with indirect bioelectrical patterns likely possess greater overall 
fitness due to their robustness. Moreover, learning an indirect mapping between morphology and 
bioelectrical patterns enables the exploration of a larger morphospace compared to direct mappings. 
This greater adaptability stems from the ability of indirect mappings to represent a broader range of 
morphologies or compressed morphological information. Our simulated experimental comparisons 
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between normal development and outcomes following bioelectric pattern rotation indicate that both 
direct and indirect pattern organisms adapt well and exhibit emergent generalizability to new 
bioelectrical patterns. This competency may facilitate the introduction of new patterns in evolution, 
enhancing adaptability and overall fitness.  

Our model makes a specific prediction for loss-of-function targeting of motivation pathways in 
regenerative morphogenesis, which we decided to test in vivo, via the serotonergic route. The 
serotonin neurotransmitter system exists in planaria. An ortholog of tryptophan hydroxylase, which 
catalyzes the rate-limiting step in serotonin synthesis, has been identified in D. japonica [131], 
planarian serotonin receptors have also been characterized [132,133], and several studies have found 
that SSRI treatment impacts planaria in numerous ways including behavior, DNA damage, and 
regeneration [124,125,134,135]. 

We found that two different serotonin reuptake inhibitors induced a “randomizing” effect in 
planarian regeneration, in which the normally extremely reliable regeneration of 1-headed animals 
from fragments was driven to sometimes produce 2-headed and sometimes 0-headed animals. This 
is unusual because conventional treatments, such as inhibition of the Wnt signaling pathway, 
typically reliably produce inhibition of head character or excess anteriorization [136–138].  

The ability to reduce morphogenetic precision, and thus create a stochastic phenotype where 
both extremes are represented, instead of pushing the system into one specific direction along the 
anterior-posterior decision axis, is notable. That, and the fact that the phenotypes featured apparently 
normal heads with no tissue-level defects, are consistent with our contention that the stress-based 
system is regulating global information processing and error minimization, not a specific molecular- 
or cell-level endpoint. Furthermore, the ability of reagents used in human patients to reduce anxiety 
to affect morphogenesis in a way predicted by our computational model further supports a research 
program in which tools and concepts from cognitive science are used beyond brains, to address the 
complex navigation of cell collectives in their anatomical problem space [7,139]. 

Our study had a number of limitations, which can be overcome in future work. First, because 
we wanted to isolate and understand the evolutionary properties of one specific mechanism, we 
focused on bioelectricity; numerous other developmental mechanisms – including biomechanics, 
chemical gradients, etc. – could be included to determine whether and how these influence the 
evolutionary process. Also, in our simulations, the indirect pattern organisms didn’t show the 
emergent competency to be robust to changes to initial morphological conditions (see ‘Morphological 
robustness’ experiment). This is in contrast with many systems in biology, which show high 
adaptability to different initial conditions The task of learning the indirect mapping is harder than 
learning a direct one, demonstrating here likely the limits of our leaning algorithm, even if we found 
in some cases some outliers with organisms that could show an appropriate development but only 
to specific changes in initial conditions. Our system also had a static bioelectrical pattern, which is a 
simplification of highly dynamical bioelectrical patterns for development that will be implemented 
in future iterations of our model. 

One purpose of this kind of simulation is investigating the computational role and encoding of 
bioelectrical patterns in morphogenesis, with the aim to uncover novel mechanisms of development 
and evolution. This knowledge is fundamental, not only for basic evolutionary developmental 
biology but also for biomedicine and synthetic bioengineering by allowing the development of a 
rational control over large-scale growth and form and potentially paving the way for innovative 
therapeutic strategies in regenerative medicine and bioengineering targeting anatomical setpoints 
[35,140].  

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. 
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