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Abstract

Breast cancer remains a significant contributor to cancer-related deaths among women

globally. We seek for this study to examine the correlation between the incidence rates of

breast cancer and newly identified risk factors. Additionally, we aim to utilize machine learn-

ing models to predict breast cancer incidence at a country level. Following an extensive

review of the available literature, we have identified a range of recently studied risk factors

associated with breast cancer. Subsequently, we gathered data on these factors and breast

cancer incidence rates from numerous online sources encompassing 151 countries. To eval-

uate the relationship between these factors and breast cancer incidence, we assessed the

normality of the data and conducted Spearman’s correlation test. Furthermore, we refined

six regression models to forecast future breast cancer incidence rates. Our findings indicate

that the incidence of breast cancer is most positively correlated with the average age of

women in a country, as well as factors such as meat consumption, CO2 emissions, depres-

sion, sugar consumption, tobacco use, milk intake, mobile cells, alcohol consumption, pesti-

cides, and oral contraceptive use. As for prediction, the CatBoost Regressor successfully

predicted future breast cancer incidence with an R squared value of 0.84 ± 0.03. An

increased incidence of breast cancer is mainly associated with dietary habits and lifestyle.

Our findings and recommendations can serve as a baseline for developing educational pro-

grams intended to heighten awareness amongst women in countries with heightened risk.

1 Introduction

Breast cancer (BC) is the most prevalent cancer diagnosed in women (over a third of all female

cancers). Even if cardiovascular diseases are the leading cause of death, it was estimated that

deaths caused by cancer will exceed those caused by cardiovascular diseases in a few decades

[1]. According to the World Health Organization, in 2020, there were 2.3 million women diag-

nosed with breast cancer and 685 000 deaths globally [2]. Besides physical and psychological

suffering induced by breast cancer, all relatives may be affected, especially the children. There-

fore, socio-economic consequences may be severe since two out of every three employees are

forced to interrupt their careers [3].
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In spite of high incidence rates, access to care and social support promotes health in

developed countries [4]. Unlike in developing countries, where delays in diagnosis, high

treatment costs, and a lack of support all contribute to increasing mortality rates [5, 6] and

the situation worsened even further in the context of COVID-19, Morocco as an example

[7, 8]. Thus, to take the first step toward BC prevention, it is crucial to understand the risk

factors involved.

Despite the large number of breast cancer risk factors recently presented in the literature,

the discussion and decision on the most relevant ones are still ambiguous. Expressly, the sub-

ject lacks a systematic literature review that identifies emerging risk factors and examines their

association with the total incidence of breast cancer at a country level. It is particularly impor-

tant to consider modifiable risk factors in order to provide some prevention recommenda-

tions. Education may be a fundamental part of this process, yet, only few programs focused on

breast cancer education have emerged recently in this area [9]. Nonetheless, educational inter-

ventions for women at all phases of life are highly required. They may provide a good impact

by raising awareness and encouraging self-care.

In addition to examining the emerging risk factors, it may also be important to find out

their breakdown by country. It may even be more important to anticipate breast cancer future

incidence rates per country. Some research studies have predicted the future incidence and

mortality of breast cancer in some countries, such as Iran [10] Pakistan [11] and Japan [12].

Generally, they use time series models or they compute the number of new breast cancer inci-

dence and deaths by multiplying the age-specific incidence (or mortality) rates estimated for a

given year, by the corresponding expected population for a future interval of years. However,

to the best of our knowledge, no study has been carried out in order to predict the incidence

rate of breast cancer by country using machine learning and common risk factors shared

between individuals in the same country.

Additionally, it should be highlighted that besides the investigated risk factors, it may also

be relevant to incorporate some preventive reproductive factors, particularly breastfeeding and

total fertility rates. We assumed that these factors could reduce the incidence rate of breast

cancer since there is a growing body of research relating breast cancer risk reduction to breast-

feeding [13]. Furthermore, we want to assess the association between fertility and country-

specific breast cancer incidence.

The primary objective of this study is to review the most recent risk factors established

through meta-analyses and systematic reviews. The secondary objective involves collecting

and analyzing available data on risk and preventive factors from multiple countries, examining

their correlation with reported breast cancer incidence rates. The third objective is to create a

specific profile of modifiable risk factors that can be addressed within each country, such as

external factors, population eating habits, and lifestyles. This analysis aims to propose potential

solutions for mitigating the impact of these factors. Lastly, the study aims to develop a model

that serves as a starting point for predicting future breast cancer incidence based on risk and

preventive factors across countries.

The ultimate goal of this research is to conduct a larger study with the main objective of

determining the current rates of each factor in each country and subsequently predicting

future breast cancer incidence. This information can help identify high-risk countries and

facilitate early detection strategies, particularly in developing nations where early detection

programs are lacking, and cancer is often diagnosed at advanced stages. For example, if our

model predicts a high future incidence rate in a particular country, this knowledge can assist

the government in implementing appropriate actions, such as designing educational programs

to raise awareness among the at-risk population.
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Health Observatory (https://www.who.int/data/gho/

data/indicators). CO2 emissions data can be

accessed through the International Energy Agency

(https://www.iea.org/data-and-statistics/data-

products?filter=emissions). Data on breastfeeding,

contraception use, and world fertility rates are

available from the United Nations Department of

Economic and Social Affairs (https://www.un.org/

development/desa/pd/data/world-contraceptive-

use). Information on food supply quantities of

meat, sugar, and milk is provided by the Food and

Agriculture Organization (https://www.fao.org/

faostat/en/#home). Additionally, mobile cell data

can be accessed at OpenCellID (https://www.

opencellid.org/#zoom=16&lat=37.77889&lon=-

122.41942).
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2 Methods

Unlike traditional cancer studies that typically recruit cohorts, this study adopted an ecologic

study design by gathering data at the country level. To predict breast cancer incidence, we

examined the rates of risk factors across the entire population within each country. It is impor-

tant to note that this study adheres to the guidelines outlined in Strengthening the Reporting

of Observational Studies in Epidemiology (STROBE) [14].

Through an extensive bibliographic study, we examined the non-genetic risk factors associ-

ated with breast cancer. Subsequently, we collected data on these factors from various coun-

tries. Additionally, we included information on two preventive factors, namely the total

fertility rate and breastfeeding rate. It is important to note that we deliberately excluded genetic

factors from our analysis. Genetic factors pertain to individual-level data, which is not feasible

when considering the overall population. Our focus was on factors that encompass the entire

population rather than specific individuals.

In order to identify the most influential factors, we conducted correlation analyses between

the risk factors and breast cancer (BC) incidence. It is worth noting that some of these factors

lack consensus, and our study aims to establish their significance. Additionally, to forecast the

future incidence of breast cancer on a country-by-country basis, we rigorously tested and

refined six regression models.

2.1 Data collection

2.1.1 Risk factors identification. In order to identify recent BC risk factors, we have con-

ducted a systematic literature review on the related Meta-Analysis and Systematic Reviews

published in 2021. Following the PRISMA protocol [15], we started the search process on Feb-

ruary 2, 2022 by considering four digital libraries: Scopus, PubMed, Web of Science and

Cochrane. The MeSH keyword used for the automatic search in the mentioned digital sources

is “Breast Neoplasms”. The search strings used are: “Breast Neoplasms” AND “risk factors”.

Furthermore, we have removed duplicates then we applied the following inclusion/exclusion

criteria: Inclusion criteria (IC)

• IC: publications that include breast cancer non-genetic risk factors

Exclusion criteria (EC)

• EC1: studies not related to breast cancer and risk factors

• EC2: studies dealing with male breast cancer

• EC3: research articles that concern risk factors of breast cancer recurrence

• EC4: publications that treat genetic factors or family antecedent

2.1.2 Construction of the dataset. In order to create our dataset, we gathered reported

BC incidence rates dating back to 2018 in several countries, as well as available data reflecting

the risk and preventive factors we were able to access. We extracted reported incidence rates of

breast cancer (rates per 100 000 females in 2018, age between 0 and 84) from the Global Cancer

Observatory [16], the average age of women per country from WorldData [17], the prevalence

of insufficient physical activity, depression, overweight, obesity, BMI, alcohol consumption

and smoking rates from the World Health Organization [18], CO2 emissions from the Inter-

national Energy Agency [19], breastfeeding, contraception use and world fertility data from

United Nations [20]. We extracted food supply quantities of meat, sugar and milk from the

Food and Agriculture Organization [21], mobile cells from the OpenCellID [22] and surface
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area from the World Bank Open Data [23] for data normalization. Notably, we could not find

data on the consumption of sugar-sweetened beverages, so we considered data on white sugar

consumption by country since sugar is also known to be a risk factor for breast cancer [24].

2.2 Breast cancer incidence

Prior to conducting the analysis, we addressed missing values in our dataset by imputation.

Specifically, we utilized the k-Nearest Neighbor algorithm (KNN) [25]. The KNN algorithm

was applied individually to each feature with missing values, considering all other available fea-

tures as input. During the imputation process, the KNN algorithm iterates through the dataset

to identify “k” similar or closely related examples, also known as neighbors, based on spatial

proximity. For each example with missing values, the algorithm imputes those missing values

with the mean value derived from its k-neighbors. This method has been shown to effectively

handle missing data and maintain the integrity of the dataset [25].

To gain a more comprehensive understanding of breast cancer incidence across countries,

we categorized them into quartiles, which are subgroups that divide the countries based on

their breast cancer incidence rates into four equal parts. Each quartile represents 25% of the

total number of countries and is determined by the combination of three values that serve as

thresholds for this division. This approach allows for a more nuanced assessment of how coun-

tries rank in terms of breast cancer incidence.

2.3 Correlation between breast cancer incidence rates and the studied

factors

2.3.1 Data normality assessment. To evaluate the normality of the distribution of each

risk and preventive factor against the incidence of breast cancer, we employed both statistical

and graphical methods. For each factor, we conducted the Shapiro-Wilk test [26] which is a

statistical test that determines whether a sample comes from a normally distributed popula-

tion. A p-value greater than 0.05 in the Shapiro-Wilk test indicates that the data do not signifi-

cantly deviate from normality, suggesting a normal distribution. To support our findings, we

also generated histograms and Q-Q (Quantile-Quantile) plots.

2.3.2 Correlation analysis. Given the results of the normality assessments, we proceeded

with the appropriate correlation analysis. The presence of non-normally distributed data

necessitated the use of a non-parametric correlation test. Therefore, we opted for Spearman’s

rank correlation coefficient [27], which measures the strength and direction of the association

between two variables. For each risk and preventive factor, we calculated Spearman’s rank cor-

relation coefficient with the incidence of breast cancer. This approach allowed us to identify

significant associations while accounting for the non-normal distribution of our data.

2.4 Breast cancer incidence rate prediction

One of the purposes of this study is to anticipate breast cancer future incidence rate in each

country using machine learning, specifically a regression model. In this section, we go through

the prediction pipeline in great detail.

2.4.1 Regression models. We have split the data into two sets, train with 67% and test

with 33%. Then, we tested the following regression models:

• Linear Regression [28]

• Support Vector Regression (SVR) [29]

• Random Forest [30]
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• 3 Gradient Boosting models based on decision trees: Catboost [31], XGBoost [32] and

LightGBM [33]

Linear Regression [28] and Random Forest [30] are two fundamental regression models

and boosting algorithms [34] are a class of ensemble learning where models are built sequen-

tially so that each improves the error of the previous model. Catboost (Category Boosting) [31]

applies gradient boosting on decision trees and achieve satisfactory results with no required

parameter tuning. XGBoost (eXtreme Gradient Boosting) [32] is an ensemble model also

based on parallel decision trees. By combining results from a set of simple and weak models, it

generates a more accurate prediction. LightGBM (Light Gradient Boosted Machine) [33] is a

gradient boosting framework that supports distributed learning, has a fast training phase and

low memory usage and it provides efficient results. Finally, for SVR (Support Vector Regres-

sion) [29], typically Support Vector Machine (SVM) that is based on statistical learning theory

can also perform as a regression method. Unlike classical regression models, where error is

minimized by selecting the best hyperplane of fit, SVR sets a threshold error allowance around

the regression hyperplane, ensuring that all data points within the threshold are not penalized.

2.4.2 Evaluation metrics. In order to evaluate the models, we used:

• R squared (R2)

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

R-squared (R2) measures how closely the data points match the fitted regression hyper-

plane. Mean squared Error (MSE) is an absolute measure of the quality of the fit. It considers

the sum of squares of error. Consequently, the square root of MSE is the Root Mean Squared

Error (RMSE). Lastly, Mean Absolute Error (MAE) is similar to Mean Squared Error (MSE),

however, it is calculated by adding the absolute values of error. MAE is a more straightforward

depiction of the sum of error terms than MSE or RMSE. MSE penalizes high prediction errors

by squaring them, whereas MAE handles all errors similarly.

2.4.3 Features selection. We applied a Forward Feature Selection with cross-validation to

each of the six regression models. Forward Feature Selection is an iterative approach for select-

ing features that resulted in good model performance. It starts with 0 features in the model

and adds at each iteration the feature that best improves the model until adding a new variable

does not enhance the model’s performance. Cross-validation (CV) is used to test the perfor-

mance of a machine learning model and it is an efficient method when the data is limited since

it generates different test sets. Afterward, we provided a comparison between the 6 models in

terms of the above mentioned evaluation metrics. Finally, we selected the best regression

model and retrained it on the selected features 50 times with different random splits of the

training/test sets. The final result is the average performance over the 50 runs with their stan-

dard deviation.

3 Results

3.1 Data collection

We have identified 1603 publications and then removed 342 duplicates. We conducted an

analysis by inspecting each article’s title, abstract, and keywords. We identified a total of 56

studies after application of inclusion and exclusion criteria as presented in Fig 1. Accordingly,

based on the full text analysis of the selected articles, we have categorized the non-genetic risk

factors as presented in Table 1.
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In order to create the dataset, we collected reported BC incidence rates dating back to 2018

across 151 countries, along with data on 13 risk factors (available data on factors from Table 1)

in addition to 2 preventive factors (breastfeeding and total fertility rates). We refer the reader

to Appendix 1 for details about the extracted risk and preventive factors.

3.2 Breast cancer incidence

Based on breast cancer incidence rates reported in 2018 by the Global Cancer Observatory

[16], our interpretation revealed that countries with very high levels of breast cancer incidence

rates (ranging from 109.5 to 200.7) predominantly include the United States, Canada, Japan,

Australia, and most European countries.

The second category with high level (48.5–109.5) includes Russian Federation, China, some

North African countries (Morocco, Algeria and Tunisia), Indonesia, South Africa, two Eastern

European countries (Belarus and Ukraine), Turkey in addition to Latin America except

Mexico, Peru and Ecuador which belong to the third category.

The latter which is of medium incidence rate (24.60–48.5) encompasses mainly some Cen-

tral Asian countries, India, the vast majority of Gulf countries, some Sub-Saharan African

countries, namely Ethiopia, Kenya, Gabon, Cameroon, Nigeria and Namibia.

The last category with low incidence rate (4.4–24.60) aggregates the rest of Sub-Saharan

African countries in addition to Pakistan, Afghanistan, Mongolia and Maldives.

3.3 Correlation between breast cancer incidence rates and the studied

factors

3.3.1 Data normality assessment. We conducted the Shapiro-Wilk test for each factor.

The results of the test are displayed in Table 2. We also generated histograms and Q-Q plots

(see Appendix 2) to visually inspect the data distribution for any deviations from normality.

Fig 1. PRISMA flow diagram for articles’ screening and identification.

https://doi.org/10.1371/journal.pone.0308905.g001
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The histograms and Q-Q plots corroborate the results of the Shapiro-Wilk test, providing a

consistent evaluation of data normality. Only depression and insufficient physical activity

were normally distributed (P-values of 0.883 and 0.234 respectively according to Table 2).

Therefore, we opted to use the Spearman’s correlation test to assess the correlation between

the factors and breast cancer incidence rates.

Table 1. Categorization of breast cancer risk factors identified from recent biomedical literature (2021).

Risk factor category Risk factor designation Reference

Hormonal factors Oral contraceptives [35–38]

Menopausal hormone therapy [39]

Repercussions of melatonin [40]

Reproductive factors Early menarche [41, 42]

Health and physical conditions Insufficient physical activity [43, 44]

Long-term weight gain [45]

Obesity [46–48]

Chronic inflammation [49]

Type 2 diabetes [48, 50]

Vitamin D deficiency [51]

Breast skin microbiota [52]

Bariatric surgery [53]

Preeclampsia [54]

Thyroid disease [55]

Sleep-disordered breathing [56]

Psychological Factors Bipolar disorder [57]

Stress [58, 59]

Trauma, grief and depression [60]

Lifestyle Smoking [61]

Alcohol consumption [62]

Sedentary work [63, 64]

Night-shift work [65, 66]

Excessive Smartphone use [67]

Eating habits Pickled foods [68]

Consumption of red and processed meat [69–71]

Intake of Isoflavones [72]

Ultraprocessed food intake [73]

Consumption of sugar-sweetened beverages [74, 75]

Pro-inflammatory diet [76, 77]

Milk consumption [69]

Medications Aspirine use [78, 79]

Antihypertensive medication use [80]

External exposures Light at night exposure [81, 82]

Exposure to Polychlorinated Biphenyls [83]

Exposure to Endocrine disruptors [84]

Ambient air pollution exposure [85]

Pesticide exposure [86]

Hair chemicals [87]

Exposure to Polycyclic Aromatic Hydrocarbons [88]

Demographic factors Age (advancing age) [89]

Low socioeconomic status [90]

https://doi.org/10.1371/journal.pone.0308905.t001
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3.3.2 Correlation analysis. Table 3 displays the results of the correlation test. The last col-

umn indicates the interpretation of Spearman’s correlation coefficient ρ. Six interpretations

are possible [91]:

• Perfect association: |ρ| = 1

• Very strong: 0.80� |ρ|< 1

• Moderate: 0.60� |ρ| < 0.80

• Fair: 0.30� |ρ|< 0.60

• Poor: 0< |ρ|< 0.30

• No association: ρ = 0

Table 2. Normality test (Shapiro-Wilk) for each factor.

Factor Statistic P-value Normal Distribution

CO2 emissions 0.73 < 0.05 False

Pesticides 0.42 < 0.05 False

Average age 0.94 < 0.05 False

Depression 0.99 0.883 True

Mobile cells 0.61 < 0.05 False

Alcohol consumption 0.96 < 0.05 False

Tobacco consumption 0.79 < 0.05 False

Sugar consumption 0.88 < 0.05 False

Meat consumption 0.94 < 0.05 False

Milk consumption 0.88 < 0.05 False

Obesity 0.97 < 0.05 False

Insufficient physical activity 0.98 0.234 True

Total Fertility Rate 0.89 < 0.05 False

Breastfeeding rate 0.96 < 0.05 False

Oral contraceptives 0.86 < 0.05 False

https://doi.org/10.1371/journal.pone.0308905.t002

Table 3. Results of the Spearman’s correlation test (correlation between BC incidence rate and each factor).

Factor Correlation P-value Interpretation

Average age 0.88 < 0.05 Very strong

Meat consumption 0.79 < 0.05 Moderate

CO2 emissions 0.71 < 0.05 Moderate

Depression 0.71 < 0.05 Moderate

Sugar consumption 0.71 < 0.05 Moderate

Tobacco consumption 0.69 < 0.05 Moderate

Milk consumption 0.64 < 0.05 Moderate

Mobile cells 0.63 < 0.05 Moderate

Alcohol consumption 0.57 < 0.05 Fair

Pesticides 0.56 < 0.05 Fair

Oral contraceptives 0.52 < 0.05 Fair

Insufficient physical activity 0.40 < 0.05 Fair

Obesity 0.36 < 0.05 Fair

Total Fertility Rate -0.86 < 0.05 Very strong

Breastfeeding rate -0.60 < 0.05 Moderate

https://doi.org/10.1371/journal.pone.0308905.t003
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All the factors are significantly associated with the incidence of breast cancer

(P − value < 0.05) (Table 3). Concerning risk factors, average age is very strongly associ-

ated with BC incidence (correlations of 0.88). Meat consumption, CO2 emissions, depres-

sion, sugar intake, tobacco use, milk consumption, and mobile cells show moderate

correlations with the occurrence of breast cancer (correlation of 0.79, 0.71, 0.71, 0.71,

0.69, 0.64 and 0.63 respectively). Alcohol consumption, pesticides, oral contraceptives,

lack of physical activity, and obesity are all fairly linked to the incidence of the disease

(0.57, 0.56, 0.52, 0.40 and 0.36 respectively). In terms of preventive factors, breast cancer

incidence shows a very strong negative correlation with fertility (correlation of -0.86) and

a moderate negative correlation with breastfeeding (correlation of -0.60). It makes sense

that higher levels of risk factors are linked to an increased incidence of breast cancer,

while higher levels of preventive factors are associated with a reduced incidence.

3.4 Breast cancer incidence rate prediction

Table 4 presents the results of prediction: comparing the performance of the 6 machine learn-

ing models in terms of R squared, RMSE and MAE.

CatBoost Regressor achieves an R squared score of 0.84 ± 0.03 in predicting BC incidence

rate, making it the best performing model against the other 5 regressors. Such value of R

squared is considered high and the prediction is accurate as it shows that the model can predict

well the incidence rate value for a given country. The result is confirmed by the RMSE and

MAE metrics which recorded smaller values (20.39 ± 2.26 and 14.99 ± 1.62 respectively) for

CatBoost Regressor compared to the 5 remaining models.

The Forward Feature Selection enabled the selection of 13 variables from a total of 15. The

selected features are: CO2 emissions, pesticides, average age, mobile cells, tobacco consump-

tion, sugar, milk and meat consumption, insufficient physical activity, obesity, breastfeeding,

total fertility rate and oral contraceptives.

The feature importance is computed using the impurity-based feature importance. Fig 2

represents the importance of each risk or preventive factor associated with breast cancer. The

greater the score, the more important the feature. The importance of a feature is known as the

Gini importance.

4 Discussion

Our study showed that age is the most correlated factor with breast cancer incidence (correla-

tion of 0.88 according to Table 3). Other studies have confirmed that age is the most predomi-

nant risk factor for breast cancer [92], and the incidence rate increases significantly with age in

different countries [93, 94]. Yet, younger women are not spared, for the latter, breast tumors

are likely to appear in more complicated states, with positive lymph nodes, larger size and

weaker survival [95].

Table 4. Evaluation results of regression models.

Regressor Number of selected features R squared RMSE MAE

CatBoost Regressor 13 0.84 ± 0.03 20.39 ± 2.26 14.99 ± 1.62

Light GBM Regressor 10 0.83 ± 0.04 21.24 ± 2.32 15.76 ± 1.66

Random Forest 10 0.83 ± 0.04 21.05 ± 2.55 15.23 ± 1.88

SVR 8 0.82 ± 0.03 22.11 ± 2.50 15.82 ± 1.70

XGBoost Regressor 15 0.81 ± 0.05 22.28 ± 3.06 16.06 ± 2.14

Linear Regression 2 0.78 ± 0.03 24.49 ± 2.31 19.27 ± 1.70

https://doi.org/10.1371/journal.pone.0308905.t004
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According to our study, meat consumption is the most influencing eating habit positively

correlated with the incidence of the disease (correlation of 0.79 according to Table 3). Accord-

ing to the International Agency for Research on Cancer (IARC), meat consumption can range

from a few percent to 100% depending on the country [96]. In a recent research conducted

using the Sister Study cohort [97], authors examined different types of meat and breast cancer

incidence. They found that red meat consumption may increase the risk of invasive breast can-

cer [98]. The same conclusion has been drawn by several meta-analyses and systematic reviews

insistently on processed meat [68–70].

Important correlation was observed regarding the association of breast cancer with CO2

emissions, depression and sugar consumption (0.71 according to Table 3).

A meta-analysis of 18 epidemiological studies indicates that exposure to ambient air pollu-

tion may have a significant impact on breast cancer development. Pooled analysis found that

nitrogen dioxide exposure increases breast cancer risk [85]. As far as air particles are con-

cerned, particulate matter PM2.5 and PM10 did not have significant associations with BC risk.

Authors argue that further studies, particularly in developing countries, are needed to draw a

firm conclusion of causality [85].

A recent retrospective cohort study [99] highlights a significant connection between depres-

sion and an increased risk of cancer, particularly breast cancer. The study demonstrated that

individuals with depression showed an 18% overall increase in cancer diagnosis risk. This risk

Fig 2. Feature importance using CatBoost.

https://doi.org/10.1371/journal.pone.0308905.g002
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was most pronounced for breast cancer, with a hazard ratio (HR) of 1.23 (95% CI: 1.12–1.35,

p< 0.0001) [99]. Additionally, we found that depression prevalence in a country as a psychiat-

ric morbidity is associated with BC incidence. A recent systematic review investigating the

impact of psychological factors on breast cancer risk has found that from twenty studies pub-

lished between 1988 and 2020, only five reported a significant association between depression

and BC incidence [60]. The authors emphasized that psychological factors deserve further

investigation.

As for sugar consumption, the results of a study involving participants from a large pro-

spective cohort confirmed our finding. Higher sugar intake with its different types has been

associated with an increased risk of breast cancer [24]. Notwithstanding, the authors claimed

that experimental data are needed to clarify the mechanisms behind these findings. Equally

important, consumption of sugar-sweetened beverages may also increase the risk of breast

cancer [74, 75].

Conforming to our study, tobacco consumption is the first lifestyle habit positively corre-

lated with BC incidence (correlation of 0.69 according to Table 3). In this regard, a Mendelian

Randomization was applied to investigate whether there is a causality between smoking and

breast cancer risk [100]. The findings showed a possible causal relationship between lifelong

smoking exposure and BC risk.

As for milk consumption, the correlation was 0.64 (Table 3). A study evaluating the associa-

tion between dairy and soy milk consumption and BC risk joined us in concluding that higher

consumption of dairy milk was linked to an increased risk of breast cancer [101]. In spite of

this finding, a meta-analysis of 8 studies does not provide significant evidence that milk con-

sumption is associated with breast cancer risk [102]. Accordingly, milk consumption is not

consistently linked to breast cancer. To make a decision about this risk factor, further research

is needed.

As for mobile cells, we considered the number of mobile cells per country divided by coun-

try area. We intended to evaluate the association between radio-frequency radiation exposure

and BC prevalence. We found a moderate association with BC prevalence (correlation of 0.63

according to Table 3). This association was not examined in recent literature. Though, a Tai-

wanese case-control study has assessed the link between the behavior of Smartphone users and

breast cancer risk (addiction, use before sleep, closeness to breast, etc) [103]. According to the

study, excessive smartphone use increases the risk of breast cancer significantly.

Our results indicate that alcohol consumption is also positively correlated with BC inci-

dence (correlation of 0.57 according to Table 3). The dose-response relationship between dif-

ferent types of alcohol and breast cancer risk was assessed in a meta-analysis [104]. The

authors found a significant association between total drinking and breast cancer risk. The lat-

ter gradually increased with alcohol consumption, especially among postmenopausal women

regardless of the kind of alcohol consumed.

Concerning pesticides, these are considered as endocrine disruptors likely to alter hor-

monal activity or cause epigenetic damage [105]. Our results indicate a correlation of 0.56

between BC incidence and pesticides (Table 3). A systematic review of 63 studies published

between 1960 and 2019 showed that 62% indicated an association between pesticide exposure

and BC, while 38% indicated the opposite. According to the authors, exposure to some types

of pesticides may increase the risk of breast cancer [86].

Our study has found a fair link between oral contraceptives and breast cancer (0.52 accord-

ing to Table 3), which is consistent with the findings of many recent studies [35–38]. The latter

are all meta-analyses of case-control studies investigating the link between oral contraceptives

and breast cancer. It was established that taking an oral contraceptive pill was linked to a
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considerably higher risk of breast cancer in totality. It’s important to note that the type of oral

contraceptive, durability, dosage and age of starting use all have a part in this association.

Although obesity and insufficient physical activity are established risk factors for breast can-

cer [43, 44, 46–48], we could not uncover a strong link between these factors and the incidence

of the disease since we found correlation of 0.36 and 0.40 respectively according to Table 3.

Our result was also confirmed in a study rating BC risk factors [106]. Authors have demon-

strated that obesity presents only a relatively modest risk for breast cancer, however, the risk of

breast cancer is significantly increased by factors such as a genetic predisposition to the dis-

ease, a history of atypical hyperplasia and a history of neoplastic disease [106].

Regarding preventive factors, we observed a strong negative correlation between the total

fertility rate and increased breast cancer risk (correlation of -0.86 according to Table 3). A pro-

spective study conducted in Burkina Faso has provided supporting results [107]. The authors

showed that, when comparing multiparous women to their non-multiparous counterparts, it

was reported that multiparity decreases the risk of breast cancer [107]. This association is

interesting and may be the subject of several observational studies to confirm or invalidate this

point in other countries.

We also found that breastfeeding rate is moderately correlated with BC incidence (correla-

tion of -0.60 according to Table 3). A systematic review and meta-analysis of studies published

in the period of 1998–2021 uncovered a strong correlation between breastfeeding and risk of

breast cancer [108]. The duration of breastfeeding was especially found to reduce BC risk [108].

A comparison between our findings and those of recent literature is given in Table 5. The

table also provides some recommendations to reduce modifiable risk factors while emphasiz-

ing factors that need more research to determine their association with BC incidence.

In our view, there is a need for counseling about lifestyle habits (smoking and alcohol

intake), as well as education about eating habits especially for those prone to other breast can-

cer risk factors, such as a family history of the disease. In fact, the most frequent risk factors

responsible for BC onset are hereditary and genetic, such as breast cancer or ovarian cancer

history and inherited mutations, in particular BRCA1 and BRCA2 [109].

As for the prediction, building an accurate model would highlight countries likely to regis-

ter high incidence rates in the upcoming years. In terms of predictive ability, the CatBoost

model yielded the best performance. It provided the most precise results when predicting

breast cancer rates. In fact, a more precise regression is the one with a relatively high R squared

(close to 1). For CatBoost Regressor, the average R squared is 0.84 ± 0.03.

CatBoost model was also used to identify factors that had a greater impact on breast cancer

incidence prediction. Fig 2 shows that average age is the most significant predictive variable of

breast cancer incidence. This is evident since the prevalence of BC increases after the age of 40

[93, 94], and a population with a median age higher than 40 is more likely to register a high

incidence rate. Age is followed by total fertility rate and tobacco consumption (Fig 2).

4.1 Limitations and future directions

Our research has few limitations. First, given the lack of statistics regarding breast cancer, data

were used from the majority of the developed countries but there was a lack of data concerning

the United Kingdom. Also data from some Latin, Asian and African countries were not avail-

able. Nevertheless, this bias is frequently found in exploratory studies and can only be over-

come if countries are more committed to communicating their data. Second, we did not

consider genetic factors shared among individuals within the same population since related

studies are heterogeneous and the only way would have been to do a meta-analysis on real

aggregated data, which was not the scope of our study.
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As a future direction, breast cancer incidence rates will be retrieved for various years and

we will examine trends in breast cancer prevalence and related risk factors resulting from the

present study. Our intention is to explore whether the changes in risk factors have influenced

BC incidence rates.

5 Conclusion

Breast cancer is a complex disease influenced by multiple factors. Through our statistical anal-

ysis, we have identified several noteworthy associations. Specifically, we observed a significant

positive correlation between the incidence of breast cancer in a country and the average age of

women within that country, CO2 emissions, pesticides, depression rates, lifestyle, eating hab-

its, mobile cells, and the use of oral contraceptives. Conversely, preventive factors such as

breastfeeding rates and total fertility rates in a given country displayed a negative association

Table 5. Comparison between our findings and those of recent literature and some recommendations to reduce modifiable risk factors.

Factor Association assessed by other

studies (at individual level)

Association assessed by our

study (at country level)

Recommendations

Average age Positive association [92–95] Very strong association Unfortunately, age is not a modifiable factor. However, we can suggest

strengthening the screening in the countries with high levels of BC incidence

Tobacco

consumption

Positive association [100] Moderate positive

association

To quit smoking, we propose to strengthen psychological therapies for assisting

women by encouraging them to participate in free smoking cessation programs

Meat consumption Positive association [68–70, 98] Moderate positive

association

These findings bolster public health recommendations to reduce meat

consumption

Milk consumption • Positive association [101] Moderate positive

association

More studies are needed on milk consumption to come to a definite conclusion

• No significant association

[102]

Depression Positive association [60, 99] Moderate positive

association

Screening for depression needs to become more sensitive

Alcohol

consumption

Positive association [104] Fair positive association We join the 2020–2025 Dietary Guidelines for Americans. It is recommended

that adults of legal drinking age may choose to abstain from alcohol

consumption in order to reduce the risk of alcohol-related harms

Sugar consumption Positive association [24] Fair positive association We insist on the American Heart Association recommendations. It suggests

that, for women, added sugar should not exceed 100 calories a day

(approximately 6 teaspoons) and also the consumption of sugar-sweetened

beverages should be limited

Mobile cells Positive association [103] Fair positive association The association between radiofrequency radiation exposure and BC incidence

should receive more attention in future studies so that we can make

recommendations accordingly

Oral contraceptives Positive association [35–38] Fair positive association Generally, it may be beneficial to organize campaigns demonstrating the direct

link between oral contraceptive use and breast cancer risk. Individually, every

woman needs to discuss her contraception options with her physician.

CO2 emissions Positive association [85] Fair positive association A recent literature review on ways to reduce carbon emissions from supply

chains demonstrated the importance of coordinating with various means to

reduce gas emissions. For instance how energy consumption is structured,

production processes, and the optimal level of carbon emissions [110]

Pesticides Positive association [86] Poor positive association Local fruits and vegetables are encouraged and they must be washed thoroughly

before consumption.

Obesity • Positive association [46–48] Poor positive association Even if we had not figure out a strong link between obesity and BC incidence,

we recommend avoiding foods with high fat content and added sugar• No significant association

[106]

Insufficient

physical activity

Positive association [43, 44] Poor positive association Our study found a weak link between insufficient physical activity and the

prevalence of BC, yet we emphasize the current physical activity guidelines for

Americans. In fact, women need 150 minutes of moderately intense exercise per

week

https://doi.org/10.1371/journal.pone.0308905.t005
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with breast cancer prevalence. These findings informed the inclusion of these features in our

breast cancer prediction model at the country level.

The prediction task was formulated as a regression problem, aiming to estimate the inci-

dence rate of breast cancer. Our model demonstrated strong performance, achieving a mean

R-squared score of 0.84 ± 0.03, underscoring the predictive power of our approach and the

robustness of the regression model.

While this work provides valuable insights into predicting future breast cancer incidence

rates and understanding major risk factors, it is important to interpret the results with caution

due to the ecologic study design. Our findings are based on group-level data, and as such, can-

not be directly translated to individual risk factors or causality. Nonetheless, this study high-

lights key areas for public health interventions and offers targeted recommendations for

modifying certain modifiable factors, particularly lifestyle choices and eating habits. By

addressing these factors at the population level, there is potential to make a substantial impact

on reducing the burden of breast cancer.
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