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Habituation as optimal filtering

Samuel J. Gershman1,2,*
SUMMARY

Habituation, the reduction of responding to repetitive stimuli, is often conceptualized as a kind of atten-
tional filter, amplifying salient signals at the expense of non-salient signals. No prior account has explicitly
formalized filtering principles that can explain themajor characteristics of habituation. In this paper, a sim-
ple probabilistic model is developed which permits analysis of the optimal filtering problem. This model
exhibits the major characteristics of habituation, while also shedding light on other, relatively neglected,
characteristics. These results demonstrate that habituation can be understood as a form of optimal
filtering.

INTRODUCTION

Arguably the simplest and most ancient form of learning is habituation, the reduction of responding to repetitive stimuli.1 Not limited to an-

imals, it is exhibited by organisms as far flung as protozoa2–5 and plants.6,7 For example, the ‘‘sensitive plant’’ Mimosa closes its leaflets in

response to mechanical stimulation, but with repeated stimulation the leaflets eventually reopen and cease to close. Similarly, the unicellular

ciliate Stentor contracts in response to mechanical stimulation, but this contraction response attenuates with repeated stimulation. The ubiq-

uity of habituation suggests that a universal principle may be at work. However, most theoretical treatments of habituation have focused on

particular psychological8–10 or neural11–15 mechanisms, leaving the normative question—what is the logic of habituation?—unanswered.

One clue is the commonplace observation that defensive responses such as leaflet closing (inMimosa) and cellular contraction (in Stentor)

impede other activities such as photosynthesis and feeding. Thus, organisms should only respond defensively if the stimulus is really a threat.

Mimosa reopens during rain in spite of the frequent mechanical stimulation. Stentor, adapted to living in turbulent ponds, returns to feeding

in spite of mild disturbances to the water. Determining whether a stimulus indicates a threatening situation is fundamentally ambiguous,

because the signals impinging on an organism’s sensory apparatus may be similar for threats and non-threats. This imposes an inference

problem: what’s out there? In the language of signal processing, this corresponds to filtering—tracking a time-varying latent state variable

based on noisy signals.16 The interpretation of habituation as a form of attentional filtering has a venerable history (see the review by M. Ram-

aswami 15). For now, we simply note that no previous model has formalized this idea in a way that explains all the major characteristics of

habituation.

By making some assumptions about the structure of the environment and the sensors, we can derive a model of Bayes-optimal filtering.

According to this model, the organism represents its state uncertainty in the form of a probability distribution, updated according to Bayes’

rule. The distribution is used to compute the probability that the state is greater than a ‘‘danger’’ or ‘‘salience’’ threshold. The model assumes

that the response probability or amplitude measured experimentally corresponds to the threshold exceedance probability. This simple

model can explain the major characteristics of habituation (Box 1), as well as some subtle characteristics that have received less attention.
RESULTS

Model

We model an organism living in a time-varying environment (Figure 1). At time t, the organism collects sensory signal xt ˛R, drawn from a

probability distribution pðxt jxtÞ with expectation E½xt � = xt . We will refer to xt as the state at time t. The state’s time series is drawn from

a probability distribution pðxÞ. The sensory signal is assumed to be measured on a logarithmic scale, consistent with psychophysical (i.e.,

the Weber-Fechner law36) and biophysical (i.e., fold-change detection37,38) principles. The model developed below does not intrinsically

require logarithmic sensory transduction, but this is mathematically convenient since it does assume that the signals are real-valued.

The organism generates a response yt ˛ ½0; 1� based on its inferences about the underlying state. In particular, we assume that the

response corresponds to the probability that the state is greater than a threshold c:

yt = pðxt > jjhtÞ =

Z
xt

I½xt > j�pðxt jhtÞdxt ; (Equation 1)
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Box 1. Major characteristics of habituation (adapted from 17)

1. Simple habituation: repeated application of a stimulus results in a progressive decrease in the response until an asymptotic level is reached.

2. Spontaneous recovery 18–21: if the stimulus is withheld after response decrement, the response recovers at least partially over the observation time.

3. Potentiation 22,19,4: after multiple series of stimulus repetitions and spontaneous recoveries, the response decrement becomes successively more rapid

and/or more pronounced.

4. Frequency (rate) sensitivity 23,24,21: other things being equal, more frequent stimulation results in faster and/or more pronounced response decrement,

and more rapid spontaneous recovery.

5. Intensity sensitivity 19,25,23: within a stimulus modality, the less intense the stimulus, the more rapid and/or more pronounced the behavioral response

decrement. Very intense stimuli may yield no significant observable response decrement.

6. Stimulus specificity 26–28: within the same stimulus modality, the response decrement shows some stimulus specificity. This characteristic distinguishes

habituation from sensory adaptation/motor fatigue in neuroscience.

7. Dishabituation 29,19: presentation of another (usually strong) stimulus results in the recovery of the habituated response.

8. Habituation of dishabituation 30–33,19: upon repeated application of the dishabituating stimulus, the amount of dishabituation produced decreases.

9. ‘‘Below-zero’’ effects 19: the effects of repeated stimulation may continue to accumulate even after the response has reached an asymptotic level. This

effect of stimulation beyond asymptotic levels can alter subsequent behavior, for example, by delaying the onset of spontaneous recovery.

10. Long-term effects 34,35: some stimulus repetition protocols may result in properties of the response decrement (e.g., more rapid rehabituation than base-

line, smaller initial responses than baseline, smaller mean responses than baseline, less frequent responses than baseline) that last hours, days or weeks.

We do not explicitly model these effects here, since the model does not commit to any particular timescale.
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where I½ $� = 1 if its argument is true (0 otherwise), and pðxt jhtÞ is the posterior over the state conditional on the signal history ht =

fxt0 : t0 % tg, given by Bayes’ rule:

pðxt jhtÞfpðht jxtÞpðxtÞ: (Equation 2)

Depending on the preparation under study, we can interpret the response yt either as the probability of a binary action (e.g., the prob-

ability of contraction in response to an aversive mechanosensory signal) or as the amplitude of a continuous action (e.g., the amplitude of

the flexor withdrawal in response to cutaneous electrical stimulation).

To obtain an analytically tractable model, we assume that the state is drawn from a Gaussian process39 and then corrupted by additive

Gaussian noise to generate the signal:

x � GPðm; kÞ (Equation 3)
xt � N ðxt ;aÞ; (Equation 4)

wheremt = E½xt � is the mean function, kt;t0 = E½ðxt � mtÞðxt0 � mt0 Þ� is the covariance function, and a> 0 is the signal noise variance. We as-

sume that themean function is fixed to 0 for all t, whichmeans that the organism tends to expect 0 signal amplitude in the absence of evidence

to the contrary. The covariance function determines the timescale of habituation; we do not explicitly distinguish between ‘‘short-term’’ and

‘‘long-term’’ habituation (see Property 10 in Box 1) because the meaning of these terms (how long is long?) vary depend on the context and

model organism.

Under these assumptions, we can derive a closed-form expression for Equation 1:

yt = F

�bxt � j

st

�
; (Equation 5)
Figure 1. Structure of the model

A stimulus generates a sensory signal with intensity xt (green circles), drawn from aGaussian distribution with mean intensity xt (green line). All the sensory signals

up to time t are collected into the vector ht , which is fed into the learning system (a Bayes-optimal filter). The output of the learning system is a probabilistic

estimate of the mean intensity at time t, parametrized by a mean (bxt ) and variance (s2t ). Based on this estimate relative to a threshold c (dashed blue line),

the organism generates a binary response with probability yt .
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Figure 2. Illustration of the model

Green dots show the stimulus series and blue dashed line shows the response threshold (as in Figure 1). The black curve shows the posterior mean (with standard

deviation error bars) just prior to the signal at each time point. In this illustration, the mean doesn’t change very much over time, while the standard deviation

shrinks gradually. This has the effect of decreasing the probability yt that the signal mean xt is above the threshold j, thus producing habituation.
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with posterior mean and variance given by:

bxt = kut ðK+aIÞ� 1ht (Equation 6)
s2
t = kt;t � kut ðK+aIÞ� 1kt ; (Equation 7)

where kt is the vector of covariances between t and all other time points, K is the matrix of covariances evaluated at all time points, and the

signal history ht is organized into a column vector. Note that the expressions for the posteriormean and variance hold for any choice of covari-

ance function (including non-stationary and non-smooth ones). Figure 2 illustrates how the model works on an example habituation protocol.

For simplicity, themodel above was presented for the single stimulus case. It can be straightforwardly generalized to settings withmultiple

stimuli by assuming that the covariance function is defined over time-stimulus pairs z = ½t;s�, where s˛RD denotes aD-dimensional stimulus.

Further modeling details can be found in the STAR methods section.
Simulations

Let us begin with the basic phenomenon of habituation (Property 1 in Box 1): why does it happen? The filteringmodel asserts that habituation

arises from the process of learning that the current state is non-threatening. Intuitively, a repeated signal, provided that its intensity is below

the threshold c, will drive the mean bxt of the posterior distribution toward a sub-threshold value. In addition, the variance of the posterior

distribution s2t will be driven toward 0 as evidence accumulates. Together, these dynamics imply that the response yt should diminish with

repetition—i.e., simple habituation.

Parametric studies of stimulus frequency (or rate) and intensity have revealed amore complex pattern. A common finding (e.g., 21,24) is that

habituation is stronger for high stimulus frequency. The filtering model accounts for this (Figure 3) by virtue of the fact that high frequency

drives the posterior uncertainty down more aggressively, yielding a sharper reduction in responding. Critically, however, this depends on

the intensity being below threshold. If it is above threshold, sensitization (an increase in responding with repetition) should be observed.

This is consistent with the findings of Groves and Thompson,23 who further demonstrated that high frequency stimuli produce stronger sensi-

tization. In other words, frequency controls the slope of the learning curve, which goes in opposite directions depending on stimulus intensity.

This is expected based on the different roles for the posterior mean and variance in determining response dynamics. Specifically, intensities

below the response threshold will produce habituation, whereas intensities above the response threshold will produce sensitization. Because

high frequency reduces the variance more quickly, this translates to a faster learning curve.

Most studies that manipulate parametric properties of the stimulus series confound learning (encoding and retention of information) and

performance effects (expression of learned knowledge); see the review by R.M.Colwill et al.40 for further discussion of this issue. A few studies

have used a ‘‘common test’’ procedure, where the learning conditions are varied across groups of subjects but all subjects receive the same

test trials. Here, we focus on a study reported by Davis,24 who showed that responses to test stimuli were weaker for low frequency stimuli

when measured using a common test. The filtering model captures this pattern (Figure 4).

This observation poses an apparent paradox, since the studies reviewed previously (which did not use the common test procedure)

showed stronger habituation (i.e., weaker responses) for high frequency stimuli. The paradox can be resolved by recognizing that responding

recovers more quickly for high frequency compared to low frequency stimuli. In terms of themodel dynamics, the same reduction in posterior

uncertainty that drives amplification of sensitivity to changes in the posterior mean also drives faster updating (similar to the effects of uncer-

tainty on learning in other domains; e.g., 41–44). These two roles can work against each other, thus explaining some of the non-monotonicities
iScience 27, 110523, August 16, 2024 3



Figure 3. Stimulus frequency and intensity effects

When intensity is low, higher frequency stimulus presentations lead to stronger habituation. When intensity is high, habituation gives way to sensitization

(increased responding as a function of stimulus repetition), with stronger sensitization for high frequency stimulus presentations.
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in the learning curves shown in Figure 3. Which role dominates will depend on both the parameters of the model and the structure of the

stimulus series.

Our discussion of the common test procedure highlights the fact that habituated responses recover spontaneously after a rest period.18–21

Recovery is slower following extended habituation, even after responding has gone to zero or some asymptotic level (so-called ‘‘below-zero’’
Figure 4. Common test procedure

In an initial habituation series (not shown here), the model received either low or high frequency stimulation. It was subsequently tested on multiple intermediate

intervals in random order.
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Figure 5. Spontaneous recovery

After a rest period in which no stimuli are presented, the response recovers from habituation. Recovery is slower when the initial stimulus series was longer. Note

that this plot shows single tests at different delays, not repeated tests.
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habituation; though see the studies by LE Gardner and D. Stephenson et al.45,46 for divergent results). The filtering model captures this phe-

nomenon (Figure 5): extended habituation, even after asymptotic responding, further decreases the posterior variance, such that it subse-

quently requires more time to return to baseline.

Rehabituationwitha2ndseriesof stimulus repetitionsproducesa learningcurve thatdecreasesmorequickly thanhabituation to the1st series,

a phenomenonknownaspotentiation.4,19,22 Importantly, the learning curve starts at roughly the same response level (provided there is adequate

recovery time). This implies that potentiation is not simply a reflection of residual habituation from the 1st series—an ‘‘inactivememory’’47must be

present, encoding information about the stimulus history that is not immediately expressed in behavior. Figure 6 shows that the filtering model

captures potentiation. The response returns to baseline after the recovery period, but the posterior variance is lower (due to having more data

compared to the beginning of the 1st series), which sharpens the sensitivity of the response function to changes in the posterior mean.

So far we have focused on studies with a single stimulus. We now turn to studies with multiple stimuli. The most elementary obser-

vation is that habituation exhibits stimulus specificity: responding increases when tested on another stimulus.26–28 This has sometimes

been interpreted to reflect generalization,19,48 in the sense that responding is intermediate between baseline and the habituated

response to the familiar stimulus. Figure 7 shows that the filtering model captures graded stimulus specificity as a function of distance

between the familiar and novel stimulus. This result is essentially baked into the structure of the covariance function (see STAR

methods), which assumes that covariance drops off exponentially as a function of Euclidean distance in stimulus space. In other words,
Figure 6. Potentiation

Rehabituation to a 2nd series is faster than initial habituation to the 1st series.

iScience 27, 110523, August 16, 2024 5



Figure 7. Stimulus specificity

Presentation of a novel stimulus produces a generalization decrement of habituation.
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presenting a new stimulus moves the recent stimulus history into a new part of the stimulus space, producing a generalization

decrement.

Another important multiple-stimulus phenomenon is dishabituation, the increase in responding to the familiar stimulus after presentation

of a novel stimulus.19,29 A typical (though not universal) finding is that dishabituation is stronger with high intensity novel stimuli. This arises in

the model (Figure 8) because a strong stimulus is farther away in stimulus space from the familiar stimulus; the posterior probabilities of the

two stimuli are coupled together, thus pulling the posterior mean for the familiar stimulus away from where it was at the end of habituation.

Dishabituation itself habituates over the repeated presentations of the novel stimulus.19,30–33 This is also predicted by the model due to the

reduction of uncertainty in the new part of stimulus space, which mitigates the generalization decrement due to moving the recent stimulus

history away from the habituated part of stimulus space.

An interesting prediction of this theory is that stimulus specificity and dishabituation should be positively correlated: dishabituation should

be stronger to the extent that the original habituation is stimulus-specific. This prediction follows from the fact that both stimulus specificity

and dishabituation arise in the model due to the same underlying property, namely generalization decrement due to a change in the pos-

terior mean.
Alternative parametric assumptions

The flexibility of the Gaussian process model allows us to explore other modeling assumptions. We assumed that the covariance function is

smooth over a characteristic timescale (see STARmethods). Alternatively, we could assume that the process is very non-smooth over this time-

scale (close to independent samples across time points), or even smoother (close to a constant mean across time points). What are the con-

sequences of these alternative modeling assumptions?

Wewill use the frequencyand intensity simulations as a case study (comparewith Figure 3).When the covariance function is verynon-smooth

(length-scale parameter l = 0:001), habituation and sensitization go away completely (Figure 9). This happens because there is no generaliza-

tion across time points. When the covariance function is close to constant (length-scale parameter l = 100), habituation for low intensity and

sensitization for high intensity is still observed, but frequency dependence goes away (Figure 10). This happens because changes in frequency

around the characteristic timescale of the experiment are effectively invisible to themodel, which can only detect changes atmuch slower time-

scales.

In summary, capturing the key phenomena of habituation requires a choice of covariance function that is smooth at the characteristic time-

scale of the experimental protocol.
DISCUSSION

This paper has shown that themajor characteristics of habituation can be accounted for by amodel of habituation as optimal filtering. The key

computations are: (i) tracking the posterior probability of a hidden state over time using Bayesian inference; (ii) mapping the posterior dis-

tribution to a response by computing the probability that the state exceeds a ‘‘threat’’ or ‘‘salience’’ threshold. These computations allow

the organism to filter out unimportant signals and amplify important ones.

Related ideas have a long history in the study of habituation. Sokolov49 was perhaps the first to suggest that habituation reflects a form of

internal model, which he conceptualized as stimulus expectation (though he never formalized this idea). Response strength depends on a

comparison between the stimulus and the expectation. In other words, response strength is proportional to prediction error. Variations of
6 iScience 27, 110523, August 16, 2024



Figure 8. Dishabituation

Presentation of a novel stimulus increases responding to the familiar stimulus. This is particularly pronounced for high intensity (strong) compared to low intensity

(weak) novel stimuli. Repetition of the novel stimulus causes habituation of dishabituation.
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this ‘‘comparator’’ model were later explored by Konorski50 and Wagner,51 framed in terms of comparison with memory representations

(‘‘gnostic units’’) associatively activated by the stimulus history. Comparator theory resonates with modern computational ideas about pre-

dictive coding.15 However, with the exception of Wagner’s SOP model and Staddon’s models (discussed further below), few versions of

comparator theory have been described in sufficient formal detail (and implemented in computational models) to be evaluated systemati-

cally. The adequacy of Wagner’s model as a descriptive account has been questioned byMackintosh.52 For example, Wagner’s model posits
Figure 9. Stimulus frequency and intensity effects with a short length-scale

Compare with Figure 3.

iScience 27, 110523, August 16, 2024 7



Figure 10. Stimulus frequency and intensity effects with a long length-scale

Compare with Figure 3.
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separate short-term and long-term habituation processes to explain phenomena like the frequency sensitivity, butMackintosh points out that

it could be explained by a single habituation process; indeed, the filtering model only appeals to a single process.

The filteringmodel shares with comparator models the idea that habituation reflects interpretation of signals through an internal model. It

also hypothesizes a comparison operation, though not between the stimulus and themodel expectation. Instead, the comparison is between

an inferred state and a threshold. In this respect, it bears similarity to ‘‘optimal approach’’ models developed in behavioral ecology,53,54 where

the critical computation for organisms is the decision about whether an unfamiliar object is safe to approach.

Within the human developmental literature, normative models of habituation have been used to explain a quite different set of em-

pirical phenomena (mainly infant looking time data). These models also invoke statistical inference, linking habituation to optimal informa-

tion acquisition.55–57

None of these prior models have been comprehensively applied to all the major characteristics of habituation, as defined in Box 1. The

most systematic attempt is the recent paper by Uribe-Bahamonde et al.,10 which could explain many aspects of habituation but nonetheless

did not offer an account of several phenomena addressed here (sensitization, frequency dependence of rehabituation). Other prominent

models of habituation, such as the cascaded integrator models explored by Staddon et al.8,9 and Bonzanni et al.,58 also only explain a subset

of the relevant data. For example, Staddon’smodels do an excellent job explaining the frequency dependence of habituation, but they do not

account for sensitization. They also only apply to single stimuli, and hence cannot explain stimulus specificity or dishabituation.

Our goal is not to pit the filteringmodel against these other models, because they are conceptualized at different levels of analysis. Unlike

these other models, the filtering model is deliberately agnostic about psychological and neural mechanisms; it adopts a level of abstraction

that allows us to recognize the function of habituation. In principle, a number of the mechanistic ideas formalized by other models could be

used to implement the computations required by optimal filtering. For example, it is possible to cast many Gaussian processes, either exactly

or approximately, in a ‘‘state space’’ form governed by linear-Gaussian dynamics.59 The optimal filtering solution is then given by a Kalman

filter, which is essentially a kind of leaky integrator model similar to those studied by Staddon and colleagues. Much work remains to be done

in bridging these levels of analysis.

Another way in which there is convergence across levels of abstraction concerns the use of memory, which plays a prominent role inWagn-

er’s SOP model and Staddon’s cascaded integrator models. These models assume that a memory trace of stimulus history is maintained

over time and compared with incoming stimuli. The filtering model also maintains a memory trace of the stimulus history (ht ), but this is
8 iScience 27, 110523, August 16, 2024
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an infinite-capacity idealization which we don’t assume is physically encoded. Because the covariance function determines the characteristic

timescale over whichmemory needs to bemaintained, very old memories can be safely discarded. One way to view the filteringmodel is that

it stipulates what memory needs to be stored, given some assumptions about the environment. This provides a normative framework for con-

straining mechanistic models of habituation.

Adopting a high level of abstraction is important for understanding habituation, because evidence suggests that theremay not be a single

mechanism underlying all its manifestations. Studies of organisms with very simple nervous systems like Aplysia have suggested that homo-

synaptic plasticity is the mechanism of habituation,60 but this hypothesis does not generalize to organisms with more complex nervous sys-

tems, where multi-cellular circuit mechanisms come into play.15,61 Even for Aplysia, the mechanisms for habituation appear to be much more

complex than originally envisioned.62 At the other extreme, unicellular organisms such as ciliates and ameobae exhibit habituation despite

having no nervous system at all. Plants and even isolated cell lines63 are in the same boat. Models like the one developed here may help us

understand what computational principles these radically different systems have in common.

Limitations of the study

The downside of abstraction is that the model does not have much to say about the specific biological mechanisms underlying habituation in

particular systems. For example, why does habituation appear to be amulticellular phenomenon in some systems but not others? Future work

will need to ground the abstract model in particular biological implementations.

Another limitation is that the model assumes that the underlying latent variable generating sensory signals varies smoothly in time. How-

ever, other temporal structures might bemore natural in certain environments. For example, some environments contain periodic or non-sta-

tionary temporal structures. Fortunately, these kinds of structures can be easily accommodated by the model through different choices of

covariance function. We leave an exploration of this question to future work.
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Materials availability
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Data and code availability

� No data were generated or analyzed as part of this study.

� Simulation code for reproducing all the figures is available at https://github.com/sjgershm/habituation.
� Any additional information required to run the simulations reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Covariance function

While there is a wide range of possible covariance functions, we assume stationarity (i.e., the covariance structure depends only on t � t0) and
smoothness (i.e., at least first-order differentiability). A conventional choice of covariance function satisfying these assumptions is the squared

exponential:

kt;t0 = exp

 
� jt � t 0j2

2l2

!
; (Equation 8)

where l> 0 is the length-scale, which determines characteristic timescale over which fluctuations tend to occur. In the multiple stimulus case

with z = ½t;s�, the squared exponential covariance function becomes:

kz;z0 = exp

�
� kz � z0k2

2l2

�
(Equation 9)

In the simulations reported above, we assume that the stimulus space is 1-dimensional; this assumption is sufficient to capture the relevant

empirical phenomena. However, more generally it is plausible that the stimulus space is multi-dimensional.
Model parameters

All simulations are based on a fixed set of parameters: a = 0:3;l = 1;j = 0:5. In principle, the parameters could be adapted based on the

stimulus history. However, this is unnecessary for the key results, so we leave the topic of parameter adaptation to future work.
Response normalization

Following a standard normalization procedure in the analysis of animal habituation data,19 model responses were multiplied by 100 and

divided by the response to an isolated stimulus. This allows us to interpret a normalized response of 100 as an unhabituated reference point.
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