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Abstract  

Background: The introduction of 5G technology as the latest standard in mobile 

telecommunications has raised concerns about its potential health effects. Prior studies of 

earlier generations of radiofrequency electromagnetic fields (RF-EMF) demonstrated 

narrowband spectral increases in the electroencephalographic (EEG) spindle frequency range 

(11-16 Hz) in non-rapid-eye-movement (NREM) sleep. However, the impact of 5G RF-EMF 

on sleep remains unexplored. Additionally, RF-EMF can activate L-type voltage-gated calcium 

channels (LTCC), which have been linked to sleep quality and EEG oscillatory activity. 

Objective: This study investigates whether the allelic variant rs7304986 in the CACNA1C 

gene, encoding the α1C subunit of LTCC, modulates 5G RF-EMF effects on EEG spindle 

activity during NREM sleep. 

Methods: Thirty-four healthy, matched participants, genotyped for rs7304986 (15 T/C and 19 

T/T carriers), underwent a double-blind, sham-controlled study with standardized left-

hemisphere exposure to two 5G RF-EMF signals (3.6 GHz and 700 MHz) for 30 min before 
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sleep. Sleep spindle activity was analyzed using high-density EEG and the Fitting Oscillations 

& One Over f (FOOOF) algorithm. 

Results: T/C carriers reported longer sleep latency compared to T/T carriers. A significant 

interaction between RF-EMF exposure and rs7304986 genotype was observed, with 3.6 GHz 

exposure in T/C carriers inducing a faster spindle center frequency in the central, parietal, and 

occipital cortex compared to sham. 

Conclusion: These findings suggest 3.6 GHz 5G RF-EMF modulates spindle center 

frequency during NREM sleep in a CACNA1C genotype-dependent manner, implicating LTCC 

in the physiological response to RF-EMF and underscoring the need for further research into 

5G effects on brain health. 
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Introduction 

Recent advances in mobile telecommunication established the fifth generation, “new radio” 

technology (5G) as the latest standard of world-wide wireless signal transmission 

technologies. The increasingly broad deployment of 5G raised widespread public concerns 

about its possible adverse health effects (Frey, 2021; Quoss et al., 2021). Particularly people 

who rate themselves as electromagnetic hypersensitive are concerned about sleep 

disturbances, headaches, and associated brain health impairments due to the non-ionizing 

radiation associated with radio-frequency electromagnetic field (RF-EMF) exposure (Baliatsas 

et al., 2014; Röösli et al., 2021). While the long-term health effects of EMF exposure are 

unclear, several independent studies demonstrated that 2G-4G EMF acutely alter 

electroencephalographic (EEG) ~ 9-16 Hz oscillations in wakefulness and sleep (Borbély et 

al., 1999; Croft et al., 2008; Huber et al., 2000; Loughran et al., 2005, 2019; Regel et al., 2007; 

Schmid, Loughran, et al., 2012; Schmid, Murbach, et al., 2012). More specifically, enhanced 

spindle or “sigma” activity (~11-16 Hz) in non-rapid-eye-movement (NREM) sleep is among 

the most consistent effects of 2G-4G RF-EMFs. Nevertheless, there are striking inter-

individual differences in how volunteers respond to acute EMF exposure and some EMF 

studies failed to observe significant effects on the sleep EEG (Bosch-Capblanch et al., 2024; 

Danker-Hopfe et al., 2020; Hinrikus et al., 2022; Loughran et al., 2012; Lustenberger et al., 

2015; Schmid, Loughran, et al., 2012). Pulse modulation of 2G-4G EMF signals appears to be 

critical for induction of sleep EEG alterations (Huber et al., 2002; Regel, Tinguely, et al., 2007). 

The 5G technology operates on higher carrier frequencies (frequency range 1: 450-6000 

MHz), wider bandwidths (up to 120 MHz), and more complex signal characteristics than the 

previous technologies. The wider bandwidths may mimic continuous wave exposure yet 
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distinct features for low-latency and low-power communication may introduce short, pulsed 

waveforms. Thus, it is unknown whether 5G EMFs affect the sleep EEG. 

The high inter-individual variability and high intra-individual stability of the sleep EEG changes 

induced by 2G-4G EMF hints to a possible genetic predisposition that may provide an avenue 

to elucidate their biological underpinnings. What could be a biological mechanism, by which 

EMFs affect human brain physiology? While EMF exposure does not provide sufficient energy 

to break chemical bonds, ample evidence demonstrates that EMF can alter cellular properties 

in many organs of the body. Accordingly, EMF exposure depolarizes the membrane potential 

of excitable cells in skeletal muscles, heart, brain, and endocrine organs, which activates 

voltage-gated calcium ion (Ca2+) channels and leads to increased intra-cellular Ca2+ 

concentration (Panagopoulos et al., 2002; Kim et al., 2019; Pall, 2013; Piacentini et al., 2008; 

Rao et al., 2008). The Ca2+ influx drives processes such as hormone secretion, 

neurotransmitter release, muscle constriction, gene transcription, and neuronal activity 

(Dolphin, 2016; Neher & Sakaba, 2008). Thus, these ion channels are of critical importance 

for virtually all brain functions, and their dysfunction can give rise to various vascular and brain 

diseases (Simms & Zamponi, 2014; Zamponi, 2016). Interestingly, distinct allelic variants in 

the third intron of the gene CACNA1C encoding the α1C subunit of the L-Type, voltage-gated 

calcium channel (LTCC), associated with prolonged self-rated sleep latency and reduced 

sleep quality (Byrne et al., 2013; Kantojärvi et al., 2017; Parsons et al., 2013). This subunit 

determines the voltage sensitivity and conductance of LTCC which are expressed on almost 

all types of neurons in the brain and regulate neuronal firing, learning and memory, addictive 

behaviors, and neuronal development (Dolphin, 2016; Striessnig et al., 2014; Zamponi et al., 

2015). In addition, the LTCCs are known molecular substrates of sleep EEG oscillations in 

vitro and in vivo (Kumar et al., 2015). 

The variations in exposure parameters — such as frequency, duration, intensity, and the 

specific characteristics of the signal source — of different generations of RF-EMF complicate 

the process of establishing a consistent and reliable understanding of how RF-EMF affects 

human electrophysiology. Another factor possibly contributing to some inconsistent results in 

EMF effects on the human sleep EEG may be the limitations of the pre-defined, fixed-band 

quantification of oscillatory EEG activity. The common averaging of power spectra ignores 

inherent individual variability in the oscillatory characteristics, which may mask or eliminate 

otherwise observable effects. For the topographical characterization of neural oscillations, 

analysis of pre-defined spectral bands is highly problematic. For example, sleep spindles 

exhibit a distinct spatial pattern, with slower spindles prevailing in frontal cortical areas and 

faster spindles in the centro-occipital areas (Fernandez & Lüthi, 2020; Werth et al., 1997). 

Hence, analysis of pre-defined frequency bands may result in misleading estimations of power 

from the area under the curve. A recently published methodological approach aims to tackle 

this problem, the Fitting Oscillations & One Over f (FOOOF) analysis (Donoghue et al., 2020). 

The FOOOF algorithm enables the separate quantification of broadband, aperiodic 

background power and distinct, periodic, oscillatory components of neural power spectra. The 

FOOOF analysis provides a validated, intuitive method for reliable and informative extraction 

of the individual spectral EEG characteristics. More specifically, the NREM sleep EEG power 

spectrum displays a characteristic, decreasing trend across increasing frequencies (1/f like) 

with a distinctive ‘peak’ of power in the frequency range of sleep spindles. The FOOOF 

algorithm fits Gaussian models to parameterize the power spectra, allowing for the extraction 

and characterization of various components of the "spindle peak." 
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Based on this background, the goal of this study was to investigate whether pre-sleep 

exposure to realistic, standardized 5G EMF signals affects the spectral characteristics of 

spindles in the NREM sleep EEG and whether the EMF-induced changes are modulated by 

the variant rs7304986 of the CACNA1C gene. 

Materials and methods 

Participants 

Thirty-four healthy, right-handed volunteers were enrolled in this study. Based on specific 

inclusion and exclusion criteria, they were selected among the 2,040 participants of an 

observational study on self-rated electrohypersensitivity and sleep (Eicher et al., 2024). As 

described in detail, all participants returned a saliva collection kit (OG-500 by DNA Genotek 

Inc.) for DNA extraction and genotyping of allelic variants rs7304986 and rs16929277 of 

CACNA1C (Eicher et al., 2024). For this study, we identified the T/C allele carriers of 

rs7304986 and prospectively matched them based on sex, age and body-mass-index with a 

corresponding T/T allele carrier. Because of dropouts, the final study groups consisted of 15 

T/C and 19 T/T allele carriers of the rs7304986 variant. All participants completed a series of 

questionnaires addressing their mobile phone usage, medication intake, sleep patterns, 

general and neurological health. Additionally, we employed the Pittsburgh Sleep Quality Index 

(PSQI) (Buysse et al., 1989) to assess subjective sleep quality, the Epworth Sleepiness Scale 

(ESS) (Johns, 1991) to estimate daytime sleepiness, and the Munich Chronotype 

Questionnaire (MCTQ) (Allebrandt & Roenneberg, 2008) to quantify diurnal preference. The 

subjective sensitivity to EMF was assessed using a questionnaire developed by (Röösli et al., 

2010). Those participants who endorsed the question “Are you electro-hypersensitive?” were 

classified as “EHS”. Those who negated this question but confirmed that they “think to develop 

detrimental health symptoms due to electromagnetic pollution in everyday life” were classified 

as “attributers”. All other participants were categorized as “non-EHS”. 

Experimental Protocol 

All study procedures were approved by the Cantonal Ethics Committee (BASEC-ID: 2016-

02049) and conducted in accordance with the Declaration of Helsinki. The study protocol was 

registered on the Swiss National Clinical Trials Portal (# SNCTP000002285) and 

ClinicalTrials.gov (# NCT03074617). Written informed consent was obtained from all 

participants prior to participation. Prior to the study, all participants adhered to behavioral 

instructions aimed at minimizing external influences on sleep. For three days prior to each 

experimental session, they abstained from alcohol and caffeine and maintained consistent 

bedtimes from 11:00 PM to 7:00 AM, with compliance verified by daily sleep diaries and wrist 

actigraphy monitoring (Actiwatch Type AWL, CamNtech, Cambridge, UK). The experimental 

nights of the female participants took place in the first three weeks of their menstrual cycle, to 

ensure that hormonal fluctuations would not confound the results of the study. Mobile phone 

use was restricted from the evening before the experimental night, and all participants 

refrained from sports or sauna visits on the days of experimental nights. Throughout the study, 

participants did not travel across more than two time zones, engage in night shift work, take 

medications, smoke cigarettes, use drugs, or participate in other clinical studies. 
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All participants completed three experimental nights with different, standardized exposure 

conditions according to a randomized, double-blind, cross-over design: 1) 30-min, pre-sleep 

exposure to an active 5G EMF at a carrier frequency of 700 MHz, 20 MHz bandwidth, and 

12.5 Hz applied power control, 2) 30-min, pre-sleep exposure to an active 5G EMF at a carrier 

frequency of 3.6 GHz, 100 MHz bandwidth, and 12.5 Hz applied power control, and 3) a 30-

min sham exposure without an active field. Exposure started 60 min before bedtime and was 

applied to the left cerebral hemisphere of the participants (not known to the participants). Each 

experimental night was separated by one week, and the sequence of conditions was 

counterbalanced among the subjects.  During exposure, the participant was seated on a chair 

and the participant's head was positioned between two boxes. Two patch antennas were 

inside the box on the left side of the head, centered 42 mm vertically above the auditory canal 

and 115 mm distance to the left side of the head, targeting the electromagnetic field primarily 

at the left hemisphere. Directly after the exposure, the high-density (hd)-EEG net was hooked 

up on the participants’ head strictly observing a 30-min time window between the end of the 

exposure and the start of the sleep recording (lights out). During the preparation of the 

participants, a subjective post-exposure survey was administered, to assess whether they 

perceived a field or not, and whether they had complaints to report during or immediately after 

the exposure had occurred. 

5G Signal Characterization 

All exposure conditions were administered with the same exposure system (sXh5G), provided 

by the IT’IS Foundation for Research on Information Technologies in Society (IT'IS 

Foundation, Zurich, Switzerland), which ensures controlled and well-characterized 5G EMF 

exposure. Following detailed simulated dosimetry (Figure 1), the signal intensity was 

calibrated to ensure the specific absorption rate (SAR) for the head (averaged over 10 g of 

tissue) did not exceed 2 W/kg. The active field remained within the SAR limit for the general 

population established by the International Commission on Non-Ionizing Radiation Protection 

(ICNIRP) and posed no known health risks. The two active fields administered are 5G uplink 

signals generated in the 5G frequency range. The lower frequency signal has a carrier 

frequency of 700 MHz, 20 MHz bandwidth, Frequency Division Duplexing/Orthogonal 

Frequency-Division Multiplexing (FDD/OFDM) with 24 resource blocks, 16 time slots, 60 kHz 

sub-carrier spacing and Quadrature Phase Shift Keying (QPSK) modulation, with an output 

power of 4.28 W. The higher frequency signal has a carrier frequency of 3.6 GHz, 100 MHz 

bandwidth, Time Division Duplexing (TDD)/QPSK OFDM with 135 resource blocks, 16 time 

slots, 60 kHz sub-carrier spacing and QPSK modulation, with an output power of 1.63 W. In 

the signals used, only uplink communication is implemented, and all frames are identical with 

16 time slots. Both signals have identical power control applied that introduces low frequency 

amplitude modulation at 12.5 Hz on top of the modulation due to the occupied time slots which 

have a dominant power modulation frequency of 200 Hz resulting in a 14.2 dB peak to average 

power ratio (PAPR) (Supp. Figure 1, 2 & 3). The exposure levels in grey and white matter, 

thalamus and all tissues in the brain averaged over 0.125 g which is a cube of side length ~5 

mm are reported in Table 1 for both 700 MHz and 3.6 GHz. Peak exposures are in the cortical 

tissue closest to the antenna, the most noticeable feature being the much higher rate of decay 

of the SAR at the higher frequency. During sham exposure no signal is emitted from the 

antenna. The system has been extensively tested and validated through numerical and 

experimental dosimetry of the antenna, including uncertainty and variability analyses (Supp. 

Table 1, 2, 3 & 4), measurement of psSAR10g in a twinSAM phantom, measurement of the 
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electric field in free space, and quantitative comparison of the validation measurement and 

the numerical dosimetry. Hence, the exposure in the experiments can be compared with the 

actual exposure of users in real networks. To exclude the possibility of any interference with 

other sources of electromagnetic radiation, the shielding of the sleep laboratory was confirmed 

by validated measurements conducted by the IT’IS Foundation. All WiFi access points in the 

surrounding floors of the building were deactivated and all mobile phones, smart watches, 

tablets, trackers and laptops in the vicinity of the sleep laboratory were turned off. 

 

Figure 1. Simulated SAR Value Distributions for Both Active Fields. Top row: simulated 

Specific Absorption Rate (SAR) cross-sections at 700 MHz and 1 Watt conducted input power. 

(a) coronal, (b) axial, (c) sagittal view. Bottom row: simulated SAR cross-sections at 3.6 GHz 

and 1 Watt conducted input power. (d) coronal, (e) axial, (f) sagittal view. The color bar (30 

colors) indicates the SAR in dB scale -30 to 0 dB with reference to 2.5 W/kg. 

High-density Sleep Electroencephalography 

During the experimental sessions, we employed 128-channel Electrical Geodesics Sensor 

Nets for all-night hd-EEG recordings (Electrical Geodesics Inc., EGI, Eugene, OR). To allow 

for parallel recordings of two participants in each experimental night, we used two types of 

amplifiers of different generations (Net Amps 300 and 400 series). We combined the hd-EEG 

recordings with electrooculographic (EOG) and submental electromyographic (EMG) 

recordings for visual scoring of sleep states. We adjusted the net to the vertex and the 

mastoids and filled all electrodes with an electrolyte gel (ECI Electro-Gel, Electro-Cap 

International, Inc., Eaton, OH) to ensure high conductance and maintain good signal quality 

throughout the night. Impedances of all EEG electrodes were below 50 kΩ at the start of the 
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recording and were checked again in the morning. We referenced all channels to Cz and the 

sampling rate was set at 500 Hz. To avoid potential systematic differences between the two 

recording systems used and to ensure consistency and reliability of the results, we 

retrospectively re-calibrated all EEG recordings before data analyses.  

Table 1: Peak spatial SAR normalized for 2-W maximal psSAR10g. 

 
psSAR 0.125g W/kg 

Tissue(s) 700 MHz 3.6 GHz 

Grey Matter 2.55 1.23 

White Matter 1.68 0.49 

White and Grey Matter 2.48 1.19 

Whole Brain 2.48 1.19 

Thalamus 0.91 0.004 

Simulated Specific Absorption Rate (SAR) values averaged over 0.125 g, equivalent to cubes of 

5mm side length, for regions of interest in the head, for both the 700 MHz and the 3.6 GHz 

signals. Values are normalized to the maximal peak spatial SAR averaged over 10g of tissue of 

2 W as used in the experiments. 

Sleep EEG scoring, artifact removal and cycle analysis 

For the sleep scoring we applied the following pre-processing: using the default Hamming-

windowed FIR filter implemented in EEGLAB 2021.0 (function pop_eegfiltnew), the raw EEG 

and EOG data were low-pass filtered at 36 Hz and high-pass filtered at 0.3 Hz. Using the same 

filter function, the EMG was low-pass filtered at 100 Hz and high-pass filtered at 10 Hz. We 

down-sampled the filtered EEG, EOG and EMG data to 150 Hz. Using ‘Visbrain’ software 

(Combrisson et al., 2019) a sleep expert visually scored sleep states in 30-s epochs according 

to the American Academy of Sleep Medicine (AASM) criteria (Berry et al., 2017), with 

subsequent verification by another sleep expert (both blind to the experimental conditions). 

For the artifact removal, we applied the following pre-processing: the raw sleep EEG was 

conditioned with a notch-filter at 50 H z (Finite Impulse Response (FIR) filter, kaiser window, 

zero-phase, filter order 560, cut-off frequencies (-6 dB) at 47 and 53 Hz) to attenuate the power 

line noise and its harmonics. The NREM EEG was low-pass filtered at 40 Hz using the default 

FIR filter implemented in EEGLAB v2021.1 (Hamming window, zero-phase, filter order 166, 

cut-off frequency (–6 dB) at 45 Hz), and high-pass filtered at 0.9 Hz (FIR filter, kaiser window, 

zero-phase, filter order 4978, cut-off frequency (–6 dB) at 0.6 Hz). Data was re-referenced to 

the average of the mastoids and down-sampled to 128 Hz. We utilized ‘High-Density-

SleepCleaner’, a semi-automatic procedure (Leach et al., 2023) to efficiently detect and 

exclude artifactual epochs and EEG channels in the NREM sleep EEG. This is a Graphical 

User Interface (GUI) where outlier values are visually identified by the user based on four 

Sleep Quality Markers (SQMs): 1) delta power (0.5-4.5 Hz; from robustly z-standardized EEG 

data), 2) beta power (20-30 Hz; from robustly z-standardized EEG data), 3) the maximum 

squared deviation in amplitude from the mean EEG signal, and 4) delta power (from raw, not 

robustly z-standardized, EEG data). All SQMs were computed from both the original reference 

EEG data (Cz) and the average-referenced EEG data (Leach et al., 2023). Finally, artefactual 

channels were recovered by nearby channels using epoch-wise spherical interpolation 
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(EEGLAB 2021.0). Following the sleep staging and the cleaning of the sleep epochs, sleep 

cycle analysis was performed using the ‘Sleep Cycles’ package in R (Blume & Cajochen, 

2021) which is based on criteria originally proposed by (Feinberg & Floyd, 1979). Accordingly, 

NREM sleep periods have had a minimal duration of 15 min, which can include wakefulness 

and up to 5 min of REM sleep. Except for the first REM sleep period where no minimum 

duration criterion was applied, any REM sleep period must be at least 5 min long (Feinberg & 

Floyd, 1979). Due to technical issues with the EEG amplifier, the last part of the night was 

compromised in some recordings: T/T carriers in the 3.6 GHz exposure (n = 2), T/C carriers 

in the sham (n = 1), 700 MHz (n = 3), and 3.6 GHz exposure (n = 1). These recordings were 

excluded from whole-night analysis; however, they were retained in the analysis of the first 

sleep cycle. 

Sleep EEG spectral analysis 

For our main analysis, the pre-processed sleep EEG data following artifact removal was re-

referenced to the average of the mastoids. All signals were spectrally decomposed by 

computing power spectral density (PSD) values for each epoch using the Welch method 

(pwelch function) in Matlab (R2021b, The Math Works Inc., Natick, MA, USA). For each 30-s 

epoch, 4-s Hanning windows were used with a 50% overlap resulting in a frequency resolution 

of 0.25 Hz. Channels from the outer ring of the electrode array that do not capture EEG activity 

were excluded from the analysis. Analysis was conducted on a subset of EEG channels 

deemed relevant for the study of brain activity, totaling 109 channels. 

Fitting Oscillations & One Over f (FOOOF) analysis 

To comprehensively disentangle the effects of 5G exposure on the sleep EEG, we used the 

Fitting Oscillations & One Over f (FOOOF) toolbox (Donoghue et al., 2020). The FOOOF 

algorithm parameterizes the neural power spectra into their aperiodic and periodic/oscillatory 

components by fitting gaussian distributions through an iterative process (Supp. Figure 4). For 

each participant, each night recording, and each channel, the mean NREM (combined N2 and 

N3) sleep EEG power spectra of the whole night and separately for each sleep cycle were fit 

into the algorithm for the detection of sleep spindle peaks. The FOOOF model was 

parameterized as follows: peak width limits 1-5 Hz (to span the sigma frequency range of 11-

16 Hz), maximum number of detected peaks was set to 4, and the minimum peak height to 

0.05 log(power). Peak detection was performed in the frequency range of 1-30 Hz. For the 

spindle peak detection in the NREM sleep EEG, the following properties were extracted and 

stored for further analyses: peak center frequency [Hz], relative peak power [log10(μV2/Hz)], 

and peak bandwidth [Hz]. Peaks of interest were selected based on frequency range and 

power criteria. More specifically, all the peaks with a center frequency in the sigma range (11-

16 Hz) were identified. If more than one peak was detected, then the one with the highest 

relative power was selected. This criterion helped to identify the most prominent spindle peak 

in the power spectrum and avoid false positives in the peak detection.  

Statistics 

We used linear mixed models (LMM) with nested data structures, to describe the data in our 

repeated measures design (lme function from nlme R package). We applied Wald Chi-squared 

test statistics for the description of goodness of fit of the LMM. For the LMM, the participant 

was treated as the random variable, varying in the intercept and nested within the participant 
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matching. The fixed effects were ‘genotype’ (T/T and T/C genotypes), ‘exposure’ (conditions 

S0 [sham], E7 [700 MHz carrier frequency, 20 MHz bandwidth] and E3 [3.6 GHz carrier 

frequency, 100 MHz bandwidth]), and ‘night’ (experimental nights 1, 2, and 3). We used the 

maximum likelihood method for the estimation of the parameters of interest. In case of more 

than one variable, we performed bi-directional stepwise regression using the Akaike 

Information Criterion (AIC) for model comparison (stepAIC function in MASS R package). The 

stepwise principle for model construction is an automatic procedure of selecting the regression 

model that best fits the data. Initially, all the candidate predictive variables were included in 

the model, and then the bi-directional stepwise regression was applied, to estimate the final 

model that included the variables and/or their interactions that best explained the variation of 

the outcome. In short, an initial model was defined only by the intercept. Next, the predictor 

that best predicted the outcome was selected according to the highest correlation with the 

outcome. If this predictor improved the ability of the model to predict the outcome, then it was 

retained in the model. Each time a predictor was added, a removal test was computed of the 

least useful predictor. Then, a second predictor is selected by using semi-partial correlations 

with the outcome as a criterion. At each step, the resulting models were compared to each 

other, using the AIC which was computed as AIC = –2(log-likelihood) + 2k, where k was the 

number of model parameters including the intercept and the log-likelihood was a measure of 

model fit. The lower the AIC, the better the fit of the model. The advantage of this method is 

that it provides an objective way to estimate the LMM. We confirmed normality using Shapiro-

Wilk tests and used two-tailed, paired t-tests for post-hoc comparisons. In cases of multiple 

testing, we used the False Discovery Rate (FDR) Benjamini & Hochberg correction. We 

provide descriptive values of mean and standard error of the mean (± SEM; unless reported 

otherwise) and 95% confidence intervals (CI). We performed all statistical analyses in RStudio, 

R-4.0.2. 

For the high-density EEG topographical comparisons, nonparametric, cluster-based 

permutation statistics were used, applying a suprathreshold cluster analysis to control for 

multiple comparisons (Nichols & Holmes, 2003). Briefly, for each topographical statistical 

comparison, the condition label was randomly permuted between the contrasting groups, and 

paired, Student’s t-tests were performed. For each permutation, the maximum size of resulting 

clusters of neighboring electrodes reaching a t-value above a critical value was computed to 

form a cluster size distribution. From this cluster size distribution, the 97.5th percentile was 

defined as the critical cluster size threshold. Only electrodes reaching a t-value beyond the 

critical value (CV) and located within a cluster larger than the critical cluster size threshold 

were considered significant (paired Student’s t-tests; T/T: CV = 2.101, corresponding to a = 

0.05 for the given degrees of freedom, number of permutations 1000, n = 19; T/C: CV = 2.145, 

corresponding to a = 0.05 for the given degrees of freedom, number of permutations 1000, n 

= 15). We report Cohen’s d effect sizes. Permutation statistics for the topographical 

comparisons were performed in Matlab (R2021b, The Math Works Inc., Natick, MA, USA). 

Results 

Demographics of study sample 

The major demographic characteristics of the two genotype groups are summarized in Table 

2. Both groups reported good sleep quality (mean PSQI score < 5), normal daytime sleepiness 
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(mean ESS score < 10), and no extreme chronotype. A minority in both genotype groups 

considered themselves as being electro-hypersensitive. Interestingly, corroborating previous 

findings (Byrne et al., 2013), the T/C allele carriers of CACNA1C reported a longer subjective 

latency to fall asleep than the T/T allele carriers. 

Table 2: Demographic characteristics of the study participants. 

  T/T carriers T/C carriers p-value 

Sample size (n) 19 15 - 

Sex ratio (female/male) 16/3 14/1 - 

Age (years) 24.7 ± 2.2 25.2 ± 2.7 0.56 

Body-mass-index (kg/m2) 22.7 ± 1.7 22.1 ± 2.7 0.43 

Sleep quality (PSQI) 3.3 ± 1.2 3.8 ± 1.9 0.31 

Daytime sleepiness (ESS) 5.8 ± 2.2 5.6 ± 2.3 0.75 

Diurnal preference (MCTQ; hh:mm) 03:49 ± 00:46 03:42 ± 01:11 0.71 

Preferred morning/evening types (%) 53/47 58/42 0.33 

Habitual bedtime (hh:mm) 23:05 ± 0:43 22:44 ± 0:53 0.20 

Habitual rise time (hh:mm) 07:23 ± 0:59 07:10 ± 1:25 0.62 

Reported time to fall asleep (min) 18 ± 9 29 ± 20 0.04 

Reported sleep duration (h:mm) 7:49 ± 35 7:31 ± 48 0.21 

Electro-hypersensitivity (EHS) Yes:  10.5% 

No: 47.4% 

Attributers:      42.1% 

Yes:   6.7% 

No:  60.0% 

Attributers:      33.3% 

0.44 

Values represent means ± standard deviations or percentages per genotype group. T/T and 

T/C carriers: alleles of genetic variant rs7304986 of the gene CACNA1C. PSQI = Pittsburgh 

Sleep Quality Index; ESS = Epworth Sleepiness Scale; MCTQ = Munich ChronoType 

Questionnaire; EHS = Perception of electro-hypersensitivity according to Röösli et al. 

(2010). If the mid-sleep time on the MCTQ is earlier than 04:00, the participant is considered 

as preferential morning type, otherwise as preferential evening type. The p-values refer to 

two-tailed paired t-tests. 

Sleep Variables 

The statistical analysis of all-night sleep variables revealed an interaction between ‘exposure’ 

and ‘genotype’ (χ2(Df) = 7.2(2), Pr(>χ2) = 0.027; Df = degrees of freedom) for the combined 

N2 and N3 sleep stages (Table 3). The interaction factor was not included in the models for 

the rest of the sleep variables. In line with the anticipated first-night effect commonly observed 

in sleep laboratory settings (Le Bon et al., 2001), the factor ‘night’ showed a significant effect 

in the LMM models (Supp. Table 5). Nevertheless, post-hoc t-tests did not indicate any 

significant differences between the groups and/or the experimental conditions.    
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Table 3: All-night sleep parameters for the three experimental conditions of both genotypes 

 

CACNA1C 

genotype 

T/T allele carriers (n = 19) T/C allele carriers (n = 15)   

Exposure 

condition 

S0 E7 E3 S0 E7 E3 pExposure x 

Genotype 

Total sleep time 

(min) 

454.9 ± 

18.0 

449.8 ± 

28.2 

458.2 ± 

14.1 

446.4 ± 

21.4 

447.3 ± 

16.3 

442.3 ± 

35.3 

- 

Sleep efficiency 

(%) 

94.8 ± 3.8 93.7 ± 5.9 95.4 ± 2.9 93.0 ± 4.5 87.9 ± 18.1 92 ± 7.3 - 

Sleep latency 

(min) 

16.6 ± 9.6 19.5 ± 13.7 14.0 ± 7.0 17.1 ± 11.4 19.1 ± 12.0 17.9 ± 11.1 - 

N1 sleep (min) 17.2 ± 9.0 19.3 ± 15 17.0 ± 9.3 15.2 ± 5.9 19.3 ± 7.9 17.3 ± 7.1 - 

N2 sleep (min) 237.4 ± 

25.5 

235.1 ± 

29.2 

243.6 ± 

23.2 

246.3 ± 

22.0 

247.8 ± 

31.8 

233.8 ± 

36.2 

- 

N3 sleep (min) 99.0 ± 20.2 93.2 ± 25.7 92.1 ± 17.5 90.0 ± 18.2 89.5 ± 22.0 92.2 ± 17.7 - 

N2 & N3 sleep 

(min) 

336.4 ± 

21.5 

328.2 ± 

29.3 

335.6 ± 

19.3 

336.4 ± 

17.4 

337.3 ± 

22.0 

325.9 ± 

29.3 

0.027 

REM sleep (min) 101.3 ± 

25.3 

102.3 ± 

27.0 

105.6 ± 

21.6 

94.9 ± 20.2 90.8 ± 19.2 99.1 ± 19.5 - 

REM sleep 

latency (min) 

106.3 ± 

32.7 

96.4 ± 38.1 101.4 ± 

35.1 

106.9 ± 

42.1 

106.4 ± 

52.5 

105.9 ± 

65.0 

- 

WASO (min) 26.8 ± 17.7 32.3 ± 28.5 23.7 ± 14.2 35.5 ± 20.6 34.5 ± 16.0 40.5 ± 34.5 - 

Values represent means ± standard deviations. CACNA1C genotype: T/T and T/C allele 

carriers of gene variant rs7304986. Exposure conditions: S0 = sham exposure; E7 = 700 MHz 

carrier frequency, 20 MHz bandwidth; E3 = 3600 MHz carrier frequency, 100 MHz bandwidth. 

Total sleep time = total amount of time spent asleep; Sleep efficiency = (total sleep time/time 

in bed) * 100; Sleep latency = time between lights-off and first occurrence of non-rapid-eye-

movement (NREM) sleep stage N2; N1, N2, N3 = NREM sleep stages; N2 & N3 = combined 

NREM sleep stages N2 & N3; REM sleep = rapid-eye-movement sleep; REM sleep latency = 

time between sleep onset and first occurrence of REM sleep; WASO = wakefulness after sleep 

onset. pExposure x Genotype = Interaction Factor ‘exposure’ x ‘genotype’ of linear mixed model (Wald 

Chi-squared test statistics). ‘-‘ means that the interaction factor was not included in the final 

model. 

 

Topographical validation of sleep spindle peak parameterization 

Initially, we confirmed the validated sleep spindle characterization of the FOOOF algorithm. 

Topographical maps of the derived spindle peak parameters in N2 and N3 all-night, sleep-

EEG neural power spectra in the sham condition in all participants are depicted in Figure 2. 
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The left panel (Figure 2A) shows that the center oscillatory frequency of sleep spindles is 

higher in central and occipital cortical regions (~13-16 Hz) while frontal spindles oscillate in 

lower frequencies (~11-13 Hz). The middle panel (Figure 2B) highlights that adjusted sigma 

power of the spindle peak relative to the 1/f like background spectral trend is highest in central, 

centro-occipital regions with spindle power being reduced towards the frontal cortical areas. 

The right panel (Figure 2C) illustrates that the bandwidth of sleep spindles is wider in frontal 

areas while spindle oscillatory frequency range becomes narrower in central and occipital 

cortical regions. These maps confirm the conventional topographical characterization of sleep 

spindles (Fernandez & Lüthi, 2020) and validate the usefulness of the FOOOF algorithm to 

derive sleep spindle characteristics from the NREM sleep EEG. 

 

Figure 2. Sleep Spindle Peak Parameterization. Topographical characterization of FOOOF 

spindle peak detection (n = 33; sham condition). Left panel: center frequency of the detected 

spindle peaks (Hz). Middle panel: spindle peak power relative to the 1/f background activity 

(log10(μV2/Hz)). Right panel: bandwidth of detected spindle peaks (Hz). Different color-codes 

refer to each panel. 

Single-channel, all-night EEG  

For a first visual inspection of the EEG power changes, we plotted the all-night, broadband (1-

25 Hz, 0.25-Hz bins) EEG power density spectra of the channel C3 referenced to the right 

mastoid (C3-RM), ipsilateral to the exposure site, in NREM sleep after the 30-min pre-sleep 

5G RF-EMF exposure as the ratio to the power spectrum after sham exposure. In the T/C 

allele carriers of CACNA1C and after 3.6 GHz exposure, we observed a maximum increase 

in power spectral density of 23.9 ± 8.45 % (95% CI: [5.8 %, 42.1 %]) at 14.75 Hz following a 

maximum decrease of -15.9 ± 4.6 % (95% CI: [-6 %, -25.7 %]) at 13 Hz, which is evident as a 

profound spike in the ratio plot ‘TC-3.6 GHz/Sham’ (Figure 3A, bottom right panel). Note that 

a smaller spike-like trace is also evident in the ratio plot ‘TC-700 MHz/Sham’ (Figure 3A, 

bottom left panel) in the same spindle frequency range with a maximum power increase of 10 

± 7.4 % (95% CI: [-5.9 %, 25.8 %]) at 14.5 Hz and a decrease of -6.1 ± 3.9 % (95% CI: [-14.5 

%, 2.3 %]) at 12.75 Hz. Statistical analysis did not show any significant difference from sham 

in any frequency bin.  
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Because the distinct negative and positive peaks in the C3-RM power ratios indicate a shift in 

the spindle peak frequency rather than an overall increase in power spectral density, we next 

analyzed the periodic components of oscillatory spindle activity in the NREM sleep EEG. 

Intriguingly, the statistical analyses based on LMMs revealed a significant interaction between 

‘exposure’ and ‘genotype’ for the center frequency of sleep spindle activity (χ2(Df) = 6.4(2), 

Pr(>χ2) = 0.04). Moreover, ‘exposure’ was a significant factor in the model for the center 

frequency (χ2(Df) = 7.6(2), Pr(>χ2) = 0.02) of sleep spindles. 

Spindle peak frequency specificity 

As outlined in the methods section, we focused on the most pronounced peak within the 

spindle range. To verify the specificity of our selection procedure in case more than one peak 

was detected in that range, we computed the standard deviation of the center frequencies of 

the selected peaks in each electrode across the three nights of each participant as a measure 

of variability. Figure 3B illustrates the intra-participant spindle peak frequency variability in the 

T/T and the T/C allele carriers. In one participant in the T/T allele carriers’ group (Figure 3B, 

left panel, participant nr. 4) the variability in the selected center frequencies was higher in 

several electrodes (> 1.5 Hz in 32 out of 109 channels, with a total 109-channel mean ± 

standard deviation (std) of 0.85 ± 0.82 Hz). We arbitrarily chose this threshold because it may 

represent a minimum realistic frequency difference between slow and fast spindles within a 

participant. Upon visual inspection of the selected peaks in the highly variable channels, we 

confirmed the interchangeable selection of slow and fast spindle peaks (occurring due to 

overlap of the most prominent spindle peak with the lower peak selection threshold of 11 Hz). 

This participant was excluded from further analysis. Consequently, the mean standard 

deviation of the calculated standard deviations in the T/T carriers was 0.27 Hz, with a standard 

deviation of 0.08 Hz (n = 18), indicating the level of consistency of variability across channels 

and participants. Corresponding values for the T/C carriers were 0.20 ± 0.08 Hz (n = 15). 

 

Figure 3. A) Mean ratio (blue lines) of whole-night, sleep EEG power density spectra (1-25 

Hz, 0.25-Hz bins) between exposure conditions (700 MHz and 3.6 GHz) and sham in T/T (n = 

19) and T/C (n = 15) allele carriers of CACNA1C in EEG derivation C3 referenced to the right 

mastoid (C3-RM). Green shading indicates the spindle frequency range (11-16 Hz). Grey lines 

indicate the 95% CI. B) Intra-subject standard deviation of the selected spindle peak frequency 

in all 109 analyzed EEG electrodes of the three nights for each participant in the T/T and T/C 
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group. The participant number is on the x-axis and the electrode number on the y-axis. Color-

coding indicates the standard deviation of the selected peaks in Hz. 

High-density EEG analysis: Effects of 5G on center frequency of sleep spindles 

Consequently, we performed topographical comparisons between the two exposure 

conditions and sham for both genotype groups and for all spindle peak variables extracted 

from the spectral parameterization. All-night data analysis did not reveal any significant 

differences between the conditions. The data depicted in Figure 4 refers to the first NREM 

sleep episode (combined stages N2 & N3, T/T carriers: n = 18, T/C carriers: n = 15). Statistical 

analysis of the sleep variables of the first sleep episode revealed an effect of ‘exposure’ on 

the duration of N1 sleep stage (χ2(Df) = 6.8(2), Pr(>χ2) = 0.03) but not for N2 and/or N3 (Supp. 

Table 6). Post-hoc t-tests did not indicate any significant differences between the groups 

and/or the experimental conditions. The center frequency of sleep spindles exhibited a 

widespread (i.e., 50/109 EEG channels) shift to higher frequencies in the T/C allele carriers 

after exposure to the 3.6 GHz field in a large cluster encompassing central, parietal, and 

occipital cortical areas. The percentage increase in the center frequency was 1.43 ± 6.5*10-4 

%, corresponding to a mean shift in the frequency of the sleep spindle peak from 13.62 ± 0.1 

Hz in the sham condition to 13.82 ± 0.1 Hz after the 3.6 GHz exposure (Figure 4). The 

acceleration in the center frequency after 3.6 GHz exposure in the T/C genotype was 

consistent and showed a large effect size (Cohen’s d mean ± std = 0.78 ± 0.18; Cohen’s d 

[min, max] = [0.28, 1.28]; Cohen’s d > 0.57 in 48 out of 50 channels). The topographical 

comparisons revealed no other effects of 5G RF-EMF exposure on the hd-EEG adjusted 

spindle power and bandwidth during the first NREM sleep episode (Figure 4). 

 

Figure 4. Topographical distribution of the effects of the two active fields (700 MHz and 3.6 

GHz compared to sham) for both allelic variants (T/T: n=18 and T/C: n=15) for the extracted 

variables center frequency, adjusted power, and bandwidth in the first NREM sleep episode 

(combined stages N2 & N3). Cluster-based permutation statistics were applied, and significant 

cluster electrodes (p < 0.05) are indicated by black dots. The color bar indicates Cohen’s d 
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effect sizes of the statistical comparison with sham exposure. Warm colors indicate an 

increase, and cold colors indicate a decrease compared to sham exposure. 

Discussion 

We investigated whether two different radio-frequency EMFs of the newest 5G technology 

affect sleep and EEG sleep spindles in humans. In addition, we addressed for the first time 

the possibility of the contribution of an allelic variant (rs7304986) of the CACNA1C gene to the 

mediation of these effects. Benefitting from the recently developed FOOOF algorithm, we 

comprehensively characterized the 5G-induced changes in the spindle peak components in 

the NREM sleep EEG. Most importantly, we found a significant interaction between exposure 

and the genetic variant in the center frequency of sleep spindles. Specifically, we 

demonstrated a topographically widespread acceleration of spindle center frequency in the 

T/C carriers after exposure to the 3.6 GHz RF-EMF in comparison to sham.  

Initially, we confirmed the spatial distribution of sleep spindle characteristics (Andrillon et al., 

2011; Fernandez & Lüthi, 2020) following spindle peak spectral parameterization. More 

specifically, we found that spindle frequency is topographically organized with a sharp 

transition around the supplementary motor area between fast (~13–16 Hz) centroparietal 

spindles and slow (~11–13 Hz) frontal spindles, as it was previously reported with surface 

EEG, intracranial and unit recordings (Andrillon et al., 2011). It is important to note that with 

our peak selection process, we did not differentiate between slow and fast spindles in the 

same location/channel. The selection process identified the most pronounced peak within the 

sigma frequency range of the power spectrum as representation of the dominant spindle 

profile in the respective area and individual. 

By leveraging the strengths of spectral parameterization, we demonstrated a widespread shift 

in the center frequency of sleep spindles towards faster oscillatory activity in T/C allele carriers 

after exposure to a 5G RF-EMF with a carrier frequency of 3.6 GHz. This effect was evident 

in central, parietal, and occipital cortical areas coinciding with areas that predominantly 

express faster spindles. A number of previous studies also reported enhanced EEG spectral 

power in the upper spindle range after exposure to RF-EMF of earlier generation (Huber et 

al., 2000, 2002; Schmid, Loughran, et al., 2012; Schmid, Murbach, et al., 2012). For example, 

controlled exposure to pulse-modulated RF-EMF signals of 2 W/Kg increased power between 

13.75 – 15.25 Hz (Schmid, Murbach, et al., 2012) and 12.75 – 13.25 Hz (Schmid, Loughran, 

et al., 2012). However, these signals had a frequency of 900 MHz and their generation was 

based on a GSM frame structure as opposed to the latest 5G technology structure of the 

currently applied signals, which might introduce new sources of variability in the observed 

effects. Nevertheless, the earlier work was restricted to band-based power ratio analysis. It 

was not analyzed whether the previously observed changes in narrow-band spindle power 

also reflected a shift in the center frequency of spindles rather than an actual power increase, 

or both. Here we found in the power ratio analysis of the C3-RM channel ipsilateral to the 

exposure a pronounced peak at 14.75 Hz in the T/C carriers following exposure to the 3.6 

GHz RF-EMF. The adjacent reduction in power is consistent with a shift in power within the 

spindle range rather than an increase in fast frequency spindle activity. A smaller shift was 

also observed after exposure to the 700 MHz signal. If present, the effects of the lower 

frequency field remain marginally detectable with the current methodology. 
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The discrepancy between the deeper penetration of the 700 MHz signal revealed by the 

simulated SAR distribution in the brain and the more pronounced effects on the EEG sleep 

spindles observed following exposure to the 3.6 GHz signal remains unclear. Notably, the 

pulse modulation, which has been identified as critical for the biological effects of RF-EMF 

(Huber et al., 2002), was identical at 12.5 Hz in both fields and the psSAR10gr was 

consistently set at 2 W/kg. The findings underscore the necessity for a comprehensive 

investigation into the complex characteristics of the new 5G signals. Furthermore, they may 

suggest that the dielectric and conductive properties of the tissues associated with the minor 

allele may not be adequately represented by the current simulation parameters. Alternatively, 

the observed effects may indicate a distinct mode of action that is unrelated to SAR 

distribution.  

The generation of sleep spindles depends on reciprocal interactions between the thalamus 

and the cortex (Steriade et al., 1993; Steriade et al., 1993). The cortico-thalamic origin might 

explain the observed widespread, bilateral effect on the center frequency of sleep spindles 

following unilateral RF-EMF exposure. Bilateral effects were also reported in previous studies 

applying older-generation RF-EMF signals (Huber et al., 2000). Based on electrophysiological 

recordings, the frequency of sleep spindles is determined by the duration of the phasic 

hyperpolarization elicited by Ca2+-dependent rhythmic inhibitory postsynaptic potentials in 

thalamo-cortical relay neurons (Steriade et al., 1986; Steriade et al., 1993). As demonstrated 

in cats, a hyperpolarization lasting about 70 ms results in spindle frequencies of approximately 

14-15 Hz, whereas a longer lasting hyperpolarization leads to lower frequencies (Steriade & 

Amzica, 1998). Furthermore, LTCCs are highly expressed in thalamocortical cells, 

interneurons, and reticular thalamic neurons in the rat brain, suggesting their important 

involvement in the regulation of calcium-dependent processes critical for thalamic functions 

(Budde et al., 1998). The shift in spindle center frequency observed in the T/C allele carriers 

after 3.6 GHz RF-EMF exposure may thus be linked to shorter hyperpolarization periods in 

the thalamic nuclei. However, because thalamic exposure, especially after 3.6 GHz exposure, 

is minimal, it appears rather unlikely that the interaction with the RF-EMFs occurred at the 

level of the thalamus. The simulated SAR distribution values indicate comparable levels of 

superficial absorption between the two fields. Taken together with the widespread bilateral 

acceleration of spindle activity, these findings suggest that the effects are likely occurring at 

the cortical level, subsequently enhanced by the reciprocal thalamocortical interactions 

involved in spindle generation.  

Interestingly, Knoblauch and colleagues (Knoblauch et al., 2005) demonstrated the circadian 

regulation of spindle center frequency with a frequency reduction (from ~13.85 to 13.7 Hz) 

coinciding with melatonin secretion. These circadian changes in EEG power spectra are not 

directly associated with the circadian variation in the duration of the sleep stages (Dijk et al., 

1997). Thus, a circadian effect of RF-EMFs cannot be excluded (Ohayon et al., 2019). 

However, no circadian markers were assessed in the current study. 

Limitations 

The study was conducted in a rather small homogenous sample of young, mainly female 

participants. Thus, the findings cannot be generalized. In addition, the study did not 

differentiate between slow and fast spindles, potentially oversimplifying the complexity of 
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spindle activity. Further, the study assessed the effects of a single exposure. Long-term 

exposure and its cumulative effects were not explored, which could have different implications 

for sleep and underlying neural activity. Finally, the mechanistic underpinnings of allelic variant 

rs7304986 of CACNA1C, as well as the importance of other genetic and/or environmental 

factors in modulating individual RF-EMF effects on sleep and other physiological processes 

remain unknown. 

Conclusion and outlook 

The repercussions of allelic variant rs7304986 for the functioning of Cav1.2 channels are 

currently not known. Nevertheless, it is noteworthy that we replicated the observation in a 

previous genome-wide association study that T/C allele carriers subjectively report a longer 

time to fall asleep than T/T allele carriers (Byrne et al., 2013). Thus, this allelic variant appears 

to have a functional significance that should be further explored. In any case, our results 

provide first evidence that the LTCC Cav1.2 plays a mechanistic role in the interaction between 

EMF and the human brain. This hypothesis can be further tested by studying the effects of 

RF-EMF on the sleep EEG after selective pharmacological modulation of these channels. The 

differential effects observed between the 700 MHz and 3.6 GHz exposures highlight the 

importance of considering signal characteristics and tissue properties in understanding RF-

EMF interactions. Overall, our results provide new insights into the genetic and biophysical 

factors underlying RF-EMF effects on sleep, emphasizing the need for more targeted studies 

to elucidate these mechanisms. 
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Abbreviations 

5G Fifth-generation mobile telecommunication 

technology 

RF Radiofrequency 

EMF Electromagnetic fields 

EEG Electroencephalography 

EOG Electrooculography 

EMG Electromyography 

NREM Non-Rapid-Eye-Movement  

LTCC L-type Calcium Channels 

CACNA1C Gene encoding the α1C subunit of LTCC 

FOOOF Fitting Oscillations & One Over f 

GSM Global System for Mobile 

hd High density 

SAR Specific Absorption Rate 

psSAR Peak Spatial Specific Absorption Rate 

ICNIRP International Commission on Non-Ionizing 

Radiation Protection 

TDD  Time Division Duplexing 

FDD Frequency Division Duplexing 

OFDM Orthogonal Frequency-Division Multiplexing 

QPSK Quadrature Phase Shift Keying 

FIR Finite Impulse Response 

GUI Graphical User Interface 

SQM Sleep Quality Marker  

PSQI Pittsburgh Sleep Quality Index 
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ESS Epworth Sleepiness Scale 

MCTQ Munich Chronotype Questionnaire 

EHS  Electro-Hypersensitivity 

AASM American Academy of Sleep Medicine 

WASO Wake After Sleep Onset 

AIC Akaike Information Criterion 

CV Critical Value 

CI Confidence Interval 

SEM Standard Error of the Mean 
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