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Abstract

Bioelectric communication among cells plays an important role in numerous
morphogenetic processes. Computational modeling and experimental modulation of these
processes have largely focused on a discrete, localized view of cells and intercellular
networks determining spatio-temporal patterns of resting membrane potential (Vmem) within
tissues. Here we characterize novel contributions of the electrostatic force field, a
continuous and pervasive entity existing within living tissues and modulating intercellular
interactions. We consider a minimal but biologically-plausible non-neural bioelectric
network model endowed with an electrostatic field where the Vn..m Of a cell is regulated by
the average strength of the surrounding field via negative feedback. A detailed examination
of this model revealed that the field systematically regulates key statistical and dynamical
characteristics of spatiotemporal configurations of Vmem patterns such as complexity,
dimensionality and causality by leveraging a mechanism akin to “synergetics” where it
simultaneously forms a lower-dimensional projection of the pattern and enhances the
causal strength and distance among its components. Moreover, the almost instantly-
penetrating nature of the field endows the system with a unique amenability to self-organize
complex positional information patterns following a transient stimulation of just the
boundary of the tissue — an organizer-like property that suggests new avenues for modulation
in biomedical contexts. We used automatic differentiation-based machine learning
methods to optimize signals from a symmetry-breaking organizer region which would induce
development of a vertebrate face prepattern. A detailed spatiotemporal dynamical analysis
of a pair of such models with differing degrees of field-sensitivity revealed very different
collective coordination strategies with which the model developed the pattern, namely, a
‘preformed’ mosaic mechanism and an ‘emergent’ stigmergic mechanism. The stigmergic
pattern, in particular, recapitulated several key features of the developmental sequence of
the bioelectric facial prepattern observed in frog embryos. These results highlight the
promising potential of the electric field per se as a facilitator of collective patterning,
providing a kind of master regulator interventional target for applications in regenerative
medicine and bioengineering.



Introduction

Biological control systems, such as the ones ensuring reliable, robust embryonic and
regenerative morphogenesis [1-4], are an important and fascinating target of inquiry.
Understanding these systems has direct relevance to the regenerative medicine of birth
defects, injury, and cancer as well as to the fundamental dynamics of evolutionary
developmental biology. One of their key features is the information flow that enables
efficient control, especially via architectures in which coarse-grained “master regulator”
variables serve as control knobs that facilitate highly coordinated, complex downstream
effects. What kind of biophysical modality might underlie the integration and control of
information across living tissue in space and time [5-9]?

Here we focus onthe concept of “biological field”, originally formulated by pioneers such
Harold S. Burr, Alexander Gurwitsch, Henry Margenau and others during the early twentieth
century as aresponse to Wilhelm Roux’s “mosaic theory of development” that was based on
the philosophy of preformism [10-14]. Though the field concept has been adapted in several
seemingly disparate forms, we apply its core idea, namely, an integrated, continuous, fluid,
and invisible (to the naked eye) entity that regulates, and is regulated by, the relatively more
segregated, discrete, rigid and palpable constituents of a biological system [1-5]. More
commonly known as “morphogenetic field” in modern developmental biology, it expresses
informational and regional relationships [15], the prototypical example of which is the
morphogen gradient or the “French flag” model as is often referred to [16]. In his search for
the core dynamics of substrate-invariant decision-making systems, Alan Turing proposed an
early version of a biochemical basis of such a system, mimicking the self-organizing
properties of embryos [9,17-23]. Here we develop an analogous bioelectrical field basis of
patterning.

One important set of biological regulators concerns ionic signaling; all cells, not just
neurons, communicate electrically in vivo [24,25]. Non-neural bioelectric signaling has now
been implicated in embryogenesis, regeneration, and cancer suppression (reviewed in [26-
28]). Bioelectric properties in tissue have been shown to underlie prepatterns regulating the
formation of complex structures such as the vertebrate face [29,30], axial patterning of the
anterior-posterior [31,32], dorso-ventral [33], and left-right [34,35] axes, the location and
identity of specific organs such as the eye [36,37] and the egg-ovary system [38-42],
patterning of epithelia such as skin and feathers [43], and size control [44-48].

Numerous gene expression [49] and epigenetic [50] targets lie downstream of changes
in bioelectric state. Moreover, transduction machinery has been characterized for converting
changes of cell resting potential into second messenger cascades that impact cell behavior
such as migration, differentiation, and proliferation [51-53]. However, bioelectricity is
fundamentally not a single-cell property; it has been argued [54,55] that its true import is
because it reveals high-level, coarse-grained information structures that serve as master
regulators for complex cascades of pattern formation. Indeed, modulation of resting
potential via ion channel misexpression, pharmacological modulation of channels and
pumps, and optogenetics has enabled triggering of whole organ formation [36], appendage
regeneration [56], and tumor normalization [50,57]: spatio-temporal patterns of bioelectric



state across tissue trigger complex, organ-level downstream outcomes and all of the
transcriptional changes that they require.

Thus, the bioelectric control system has been suggested as a promising therapeutic
target for biomedicine [68-64], as well as an important component of the machinery of
evolutionary changes in body structure and behavior [65-67]. Indeed, it is now becoming
clear that modifying the bioelectric prepatterns observed in tissue, in accordance with the
predictions of a computational model, can be modified to control downstream anatomy,
such as repairing birth defects [68-70]. However, a fundamental capability gap is being able
to induce desired bioelectric patterns. Because of the difficulty of establishing standing,
long-term, spatially complex patterns of resting potential with electrodes, recent efforts
have adopted a micromanagement strategy relying on computational models for picking
electroceutical drugs (establishing patterns by turning channels on and off and relying on
the downstream properties of the excitable medium of cells) [61,71,72]. Could including a
field component in the models facilitate macroscale control of downstream bioelectric
events via electrode methods, providing a new toolkit for regenerative medicine beyond the
use of electrodes to target nerves [73,74]?

Although classic work in this field used the tools of applied and measured electric fields
[75-82], more modern approaches have almost exclusively focused on the resting potential
of individual cells [83-85] and the rules governing state transitions between neighbors and
across tissue [86-93]. In effect, this agent-based, discrete approach mirrors a key
conceptualworkhorse in neuroscience —dynamics of neuronal networks and the patterns of
information that propagate across these discrete networked nodes according to local
interaction rules. It should be noted however, that a founding father of bioelectricity, Harold
S. Burr, explicitly predicted that non-neural bioelectricity would not find its true depth of
understanding and applications until its field aspect was incorporated, not just the particle
aspect (the latter is how he referred to the discrete approach). Despite his warning in 1935
[94-98], very little work on incorporating actual electric fields into the quantitative modeling
of endogenous developmental bioelectricity has been done. Likewise, the major approaches
of targeting bioelectric controls for biomedical applications in morphogenesis have not
exploited field concepts. However, the tide is shifting in neuroscience, with field aspects of
neural function starting to take center stage as mediators of memory and long-range
coherence [99-110]. Here, we explored the incorporation of true field aspects into bioelectric
models of pattern generation.

What new features of morphogenetic control could a field contribute? We chose the
electrostatic force field in the context of bioelectric cellular networks as a setting of a
“continuous force field regulating and regulated by a discrete field of cells”, a picture that we
believe not only captures the essence of the requirements of the concept of the field as
described above but also potentially serves as a framework for the study of self-organization
of coordinate system and positional information. We sought to characterize the role of the
electrostatic force field in the patterning behavior of minimal bioelectric networks. For
simplicity and tractability, we assumed that there is no intracellular or extracellular medium
that could pose a hindrance to the transmission of the field via “charge screening” effects
[111]. Furthermore, we have limited ourselves to relatively small cellular collectives and
studied the general patterning behavior of two-dimensional lattice networks of a fixed 11x11



size under a variety of conditions representing the characteristics of the field. We then
characterized examples of specific networks that generated complex patterns through self-
organization primed by transient stimulation of a small part (boundary) of the tissue.

Figure 1 provides a schematic overview of the bioelectric field model of a 2-dimensional
sheet of cells, such as the ectoderm that gives rise to the vertebrate face or brain. Each cell
in the epithelium is equipped with a pair of generic voltage-gated ion channels (one that
depolarizes the cell and the other that hyperpolarizes it). The cells are connected in style of
a generic tissue lattice where neighboring cells are connected by voltage-gated gap
junctions — electrical synapses known to play a critical role in shaping bioelectric sighaling
[112-114] as well as the movement of other physiological small molecules. This core model,
that has been adopted in several studies before [87,92,93,115-121], is further endowed with
an electrostatic field induced by the collective of the net charges or the membrane
potentials (Vmem) Of the cells. Motivated by several “electroreception” mechanisms (the
phenomenon by which an organism perceives electric fields through special
“electroreceptors”) observed in nature, ranging from atoms to entire ecosystems [122], and
specific electric field transduction mechanisms employed by cells [123-126], we equipped
our model with a transduction mechanism where the average magnitude of the electrostatic
forces that a cell perceives modulates its ion channel opening. Specifically, if the net force
exceeds a certain transduction threshold, then the polarizing channel begins to gradually
constrict causing the cell to depolarize more (details in Methods). Furthermore, the extent
of the spatial reach of the electrostatic field radiated by a cell is controlled by the parameter
called ‘action range’ (see red boxes in top row of Figure 2). The corresponding ‘perception
range’ of a cell (blue boxes in top row of Figure 2), defined as the region around it within which
the cell can measure the field, is fixed to the size of the cell itself. That is, a cell can only
perceive the field impinging on its surface. In summary, the model is defined by four
parameters: gap junction strength (G), field transduction weight (W), field transduction
threshold (B) and field action range (R).

The electrostatic force fields follow Coulomb’s laws and conventions: the magnitude of
the force due to the field emitted by a cell shrinks in proportion to the inverse square of the
distance from the cell, and the force vectors are pointed to the cell if it is negatively charged
(top row of Figure 2). When multiple cells emit fields the net force at each pointin the tissue
is obtained by vector addition of the contributions of forces from all cells (bottom row of
Figure 2). The static snapshot of the force field profile of the tissue is determined only by the
spatial distribution of Vmem and R. The parameters R, W and B, play a role in the dynamical
behavior of patterning. Models with a high W and low B have strong field sensitivity and those
with a low W and high B possess weak field sensitivity. The combination of field sensitivity
strength and R result in different types of patterns with varying degrees and spatial
configuration of contrast, examples of which are shown in Figure 3.

We used this model to ask several specific questions about the ways in which true field
dynamics might impact the contribution of bioelectrical mechanisms to morphogenesis,
and in the interactions between the roles of the field and the “particle” (Vmem) cOmponents.
We find that the presence of the field in an otherwise conventional bioelectric system indeed
enhances its patterning capabilities, an effect that was quantified in terms of pattern
complexity, dimensionality and causal catalysis. This effect was achieved in the system via



the emergence of the field as an effective control parameter that catalyzes causal
interactions among the cells thereby driving tissue patterning. Lastly, we exploited this
mechanistic understanding of the bioelectric field system to prime it to develop a specific
target pattern - the vertebrate face. We achieved this simply by stimulating the field around
boundary of the tissue using an oscillatory paradigm, the sequence of which was optimized
using machine learning.

Figure 1. lllustration of the model. The target of the model is a portion of an early stage embryo such as the blastula (left),
modeled as a simple 2D lattice network of bioelectric cells equipped with an electrostatic field that is collectively induced
by the Vmen of the cells (center) that in turn interacts with the Vmem of individual cells (right). Grey squares represent cells,
with the black marks at the top corners of each cell representing the two ion channels. The thin double headed grey arrow
marks connecting neighboring cells represent gap junctions. The small grey circles represent the field grid points, and the
red arrows passing through them and the cells represent the electrostatic field lines. The zoomed in view of a cell on the
right more clearly shows the force vectors on each field grid point (red arrows) and their modulatory effect on the ion
channel (black dashed arrows).
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Figure 2. Static snapshots of the electrostatic force field profiles of the model when a single cell is active (top row) and
when the entire tissue is voltage-patterned (bottom row) under differing extents of the field action range (columns). In the



top panels, the blue dashed squares represent the field perception range and the red dashed squares represent the field
action range. The red arrows in all panels represent the force vectors at the field grid points. The shades of the cells
represent the voltage states, with darker shades representing more hyperpolarized potentials.
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Figure 3. Patterns generated by the 11x11 model under various field transduction conditions. Top row panels show models
with weak field sensitivity (low W and high B), and the bottom row panels represent strong field sensitivity (high W and low
B). Columns represent models with different field action ranges, namely, short, intermediate and long ranges. Patterns
displayed are obtained after 1000 steps of simulation each starting from homogenous initial conditions (details in
Methods). Shades represent voltage states with darker shades representing more hyperpolarized potentials.

Results

Bioelectric field enhances the complexity of voltage patterns in the tissue

Embryos employ a variety of biomolecular mechanisms, such as diffusion, reaction-
diffusion and vector transport, as well as bioelectric pre-patterning mechanisms to self-
organize develop positional information patterns during the course of development
[15,16,92,127-129]. Here we ask: could the electrostatic field endow the bioelectric
machinery with an enhanced capacity to pattern?

To determine this, we considered the Tononi-Edelman-Sporns complexity measure (TSE)
of the Vmem patterns [130]. TSE is an information-theoretic quantity that quantifies the
tradeoff between integration and segregation of the Vimem patterns at multiple spatial scales.
It is defined as the total sum of mutual information between bipartitions of the system
covering all partition sizes (details in Methods). When the tissue is fully integrated the cells
tend to behave synchronously as a single whole, and when it is fully segregated the cellstend
to behave independently — TSE is zero in both cases. Complexity is maximized when the
balance between the opposing forces of integration and segregation is maximized, which is
precisely what a good patterning mechanism must possess since a pattern, by definition,
requires a mixture of correlated and uncorrelated regions.

We simulated an ensemble of models by sweeping its parameter space consisting of G,
W, B and R, representing the gap junction strength, field transduction weight and threshold



and field action range respectively (details in Methods). For each parameter combination,
we computed the TSE of the corresponding model as the average over a set of 100 Viem
timeseries each obtained from a randomly chosen initial Vmem configuration and run for 5000
steps. Since TSE is typically over binary probability distributions (as inferred from timeseries
data) and given that the cells of our model are bistable, we computed the TSE over the
binarized Vremtimeseries (details in Methods).

The results (Figure 4) revealed that models with stronger field sensitivities display higher
values of TSE (80 + 20 bits) whereas models with weaker field sensitivities display relatively
lower TSE values varying in the range 0-30 bits. For comparison, the expected TSE of a
randomly generated pattern timeseries is 0 bits (no correlations between partitions on
average) and a model without a field would behave like models with zero field sensitivity,
possessing TSE values close to 0 bits. Furthermore, scenarios with stronger field sensitivities
(top right region of Figure 4) possess an optimal FR where TSE maximizes, the value of which
depends on the corresponding parameter combination. For example, the optimal FR for
models with W=1000 and B=0.0005 ranges between short and intermediate ranges (1 to 4)
that then expands to a range of 15 to 21 as the transduction threshold rises. These
observations make sense since a higher threshold means that a cell needs to be responsive
to a larger section of the tissue in order to assimilate their activities in its contribution to the
complexity of the whole. Models with weaker field sensitivities (bottom left region of Figure
4) tend to behave in a linear fashion since the cells respond less to changes in the activities
of neighboring cells due to the dampened field-mediated communication, as a result of
which the complexity of the patterning is reduced regardless of the field range.

Qur results constrain the threshold electrostatic force required for complex patterning to
an approximate range of 0.0005 mV/mm to 0.005 mV/mm (estimated by the multiplying W
with B and dividing by 1000 to convert length units from meter to millimeter) which is about
100 times smaller than the theoretically expected and empirically observed value of about
0.1 mV/mm[131,132]. However, the corresponding magnitudes of the electrostatic potential
observed in our model is about 1% of the magnitudes of the corresponding Vmem (Which
ranges between -5 to -55 mV), matching empirical observations. Both of these ratios can be
easily manipulated in our model by adjusting the relative permittivity of the cell (see model
definition in Methods) without changing the gualitative landscape of the results plotted in
Figure 4, but matching one metric would occur at the cost of the other. The other interesting
correspondence with biology is that the optimal field range is quite small for the strongly
sensitive models, matching biological observations that the reach of the field is limited to
small regions around the cells due to ‘field screening’ effects [111].

In summary, these observations show that endowing a conventional bioelectric system
with an electrostatic field enhances its patterning capacity, as evidenced by an increase in
the complexity of the Vn.m patterns with an increase in the ability of the cells to sense
changes in the field surrounding them.
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Figure 4. TSE complexity of Vmem patterns as a function of R, W and B. Values were calculated for each parameter
combination (G, R, W and B) as the mean taken over 100 model instances consisting of hundred randomized initial
conditions simulated for 5000 steps. Error bands represent the 95% confidence interval around the mean estimated using
nonparametric bootstrapping. Variations are due to differences in G that was averaged over.

Bioelectric field controls Vmem activity using a mechanism akin to synergetics

Electric fields play a critical role in shaping cognition and memory in the brain, as
evidenced by recent research showing that the simian brain uses electric fields to stabilize
memory formation and recall [99]. The brain does so by leveraging the slower timescale,
lower dimensionality and higher stability of the electric field to effectively purpose it as a
controller of neural activity despite their recurrent relationship [99-101]. This is akin to a
principle described by Hermann Haken in his theory of “synergetics” stating that the
dynamics of fast modes is determined (“enslaved”) by the slow modes [133]. Could viewing
morphogenesis through the lens of cognition [134] reveal similar underlying principles of



morphogenetic patterning, an idea that was also speculated elsewhere [133]7 In the specific
context of our model of non-neural tissue, could the electric field perform an analogous role
of controlling Vmem activity by acting as its “guardrail” [99]?

To answer it, we considered the following measures (details in Methods): 1) “relative field
compression” (RFC), defined as the difference between the total variance explained by the
first three “principal component axis” (PCA) dimensions of the field and the Vpe.ntimeseries
and expressed inthe dimensionless units of percentage; and 2) “field influence” (Fl), defined
as the rate of change of Viem (V) With respect to small changes in the electrostatic force (V/m)
between arbitrary cells and field grid points, expressed in units of distance (m) representing
the displacement of the cellif the change inits electric potential energy were to be converted
into kinetic energy. The first measure expresses the extent to which the field is more or less
compressed and thus its temporal variability compared to the Vn.m pattern, while the second
measure expresses the degree of control the field exerts over the Vnem pattern (equivalently,
the amount of energy itinjects into it). Together, these measures quantify the extent to which
the system displays synergetic effects, where the field acts as a slower timescale control
‘parameter’ and Vwem acts as a faster enslaved ‘parameter’ (analogous to neural activity as
described above).

As before, we constructed an ensemble of models by sweeping its parameter space
consisting of G, W, B and R (details in Methods) and for each parameter combination we
computed RFC and Fl of the corresponding model as the average over a set of 100 timeseries
each obtained from a randomly chosen initial Vmem configuration and run for 5000 steps
(details in Methods).

We found that RFC peaked at about 35% + 5% for models with stronger field sensitivity
and dropped to a range of -5% to 5% for models with weaker field sensitivity (Figure 5). It
moreover, stayed positive for the stronger models but sometimes became negative for the
weaker models. In other words, the field not only generally tends to be more compressed
than Vnem for the strongly sensitive models but also their difference tends to be higher
compared to the weakly sensitive models. Besides, the optimal field range where RFC
maximizes follows the same trend as what was observed for TSE above, in that among the
strongly sensitive models a lower transduction threshold meant a shorter optimal field
range, whereas a higher threshold meant a longer optimal field range. A higher compression
of the field is manifest in its slower variation (see Supplementary Material Figures S1-S3),
meaning that strongly sensitive models display slower variations in the field. The reason for
this is that small changes in the field trigger large changes in the Vmnemactivity but by the time
the field catches up it steps past the threshold and the V..m Starts swinging in the other
direction (due to negative feedback and bistability).

The qualitative trend in the behavior of FI was found to be similar to RFC across the
parameter space, achieving a peak of about 3.5 mm + 0.5 mm in the strongly sensitive
models and dropping to 0 mm for in the weakly sensitive ones and displaying shorter optimal
field ranges for the stronger models and longer ranges for the weaker models. The only
exception occurred at the parameter combination of (W=1000, B=0.002) where the optimal
field range narrowly peaked at a value of 10 with respectto Fl, whereas almost all field ranges
beyond 10 were equally optimal with respect to RFC. Notwithstanding that exception, we
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can safely conclude that RFC and Fl behave similarly in response to changes in model
parameters.

These results suggest that models with stronger field sensitivity indeed display effects
akin to synergetics, in that the field effectively acts as a causal control parameter of Vimem

activity due to its relatively slower timescale, less variability and higher stability.
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Bioelectric field catalyzes non-local causal interactions among the cells constituting the
Viem pattern

Long-distance signaling plays a crucial role in morphogenesis, facilitating
spatiotemporal coordination among the parts of the developing system [135]. Some of the
major sources of long-distance communication that have been so far identified include
diffusing morphogens, cellular protrusions, tunneling nanotubes, macrophage networks as
well as bioelectric signaling [136-138]. Electric fields are also known to play a role during
development in the form of cell migration (galvanotaxis), proliferation and modulation of ion
channels [123,135,139]. Could the electric field also facilitate direct cell-to-cell
communication especially at long distances even if it is weak? In the context of our model,
could the field catalyze the interactions among the components of the V..m pattern despite
being orders of magnitude smaller (about 1%) than Vmem?

To answer this question, we considered measures that express the degree and length of
causal interactions between the cells facilitated by the field across space and time.
Accordingly, we defined causal strength (CS) and causal distance (CD) respectively as
(details in Methods): 1) the absolute value of the derivative of the Vmem0f three representative
target cells of the tissue at representative time points ¢ > 0 of the simulation with respectto
the Vmem Of every cell at t = 0, averaged over target cells and time and expressed in
dimensionless units; and 2) the distance corresponding to the highest causal strength,
averaged over target cells and time and expressed in units of distance (m). Causal strength
quantifies the sensitivity of the Vnem 0f a cell to small changes in the Vmem 0f another cell
separated in space and time, and causal distance indicates the distance at which it occurs.

As before, we constructed an ensemble of models by sweeping its parameter space
consisting of G, W, B and R (details in Methods) and for each parameter combination we
computed CS and CD of the corresponding model over a single simulation trajectory
initiated with homogenous conditions and run for 500 steps (details in Methods).

The results (Figure 6) revealed that CS maximized to about 0.002 + 0.0005 for models
with relatively stronger field sensitivity, dropping to zero for models with weaker field
sensitivity. As with TSE, RFC and Fl above, CS also maximized at shorter field ranges for
strongly sensitive models with a lower transduction threshold and at longer ranges for
similar models but with higher thresholds - likely due to the same reasons as before.
Likewise, CD maximized at about 30 um (about 3 cells wide) for models with relatively
stronger field sensitivity, sometimes rising to 90 um (about 9 cells wide), and dropping to
zero for models with weaker field sensitivity.

The above results indicate that small changes at the beginning of the simulation in the
Vmem O @ cell could cause changes up to 2 mV in another cell about 9 cells away from the
source after 500 steps in models with strong field sensitivity. Animportant implication of the
above results is that causal strength does not necessarily decrease monotonically with
causal distance. That is, the strongest causal influence does not necessarily stem from the
closest cells but from cells further away. Taken together, our results show that the electric
field indeed has the potential to catalyze non-local causal interactions among cells, in a way
that is not a simple linear function of distance - a phenomenon that is crucial for
morphogenetic patterning and its control.
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Figure 6. Causal strength and causal distance as a function of field range. Red lines indicate CS values and are plotted
against the left y-axis and blue is CD plotted against the right y-axis. Values were calculated for each parameter
combination (G, R, W and B) as the mean taken over 100 model instances consisting of hundred randomized initial
conditions simulated for 5000 steps. Error bands represent the 95% confidence interval around the mean estimated using
nonparametric bootstrapping. Variations are due to differences in G that was averaged over.

Bioelectric field facilitates the development of a vertebrate face Viyem pattern in the bulk of
the tissue following transient stimulation of just its boundary by employing mosaic and

stigmergy-based strategies

Several morphogenetic processes observed in embryos are initiated by a so-called
“organizer” — a region that supplies positional information to distant cells [140-142]. Could
the electric field facilitate such patterning through transient stimulation of a small part of the
tissue? Moreover, several known morphogenetic patterning processes in embryos adopt a
linear and direct decoding strategy where most of the information about the pattern is
supplied by the morphogens or are deduced using relatively simple interpretation processes
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such as the French flag and the clock-and-wavefront mechanisms [143]. Could there be
more nonlinear and complex strategies where the initial information supplied by an
organizer-like entity is coded and the system actively decodes it to generate the full pattern?
Motivated by these guestions, we asked: could we prime our model to bootstrap a full
vertebral face pattern in the bulk of the tissue by stimulating only its boundary?

To study this, we designed a procedure to learn the appropriate stimulation values
required for generating a face-like Vimem pattern following a transient stimulation of only the
field grid points located around the boundary of the tissue. For this purpose, we chose a pair
of field transduction parameter sets corresponding to the strongly sensitive and weakly
sensitive categories for this purpose with the goal of sampling the extremes of a potential
range of patterning strategies that the system might employ. Specifically, we chose the
parameter combinations (W=1000, B=0.0005) and (W=10, B=0.02) with the field range setto
4 and the gap junction strength set to 0.05. We set Rt0 4 since that’s one of the most optimal
parameters of the model, as can be seen in the results above.

We adopted an oscillatory paradigm to stimulate the boundary due to its potential ability
to facilitate complex patterning via wave superpositions in the bulk — an approach inspired
by phenomena such as cymatics [144] and bulk-boundary correspondence of the
holographic principle [145]. However, in order to emulate embryogenic patterning, the
stimulations were designed to be transient and last for only an initial fraction (10%) of the
simulation time (1000 steps). We used a machine learning algorithm called gradient descent
[146] to learn the optimal values of the oscillatory inputs, namely, the amplitudes and
frequencies of the inputs meant to be applied on each of the field grid point situated around
the boundary of the tissue (details in Methods). A demonstration of the steps involved in the
patterning is shownin Figures 7 and 8 corresponding respectively to the weakly sensitive and
strongly sensitive models.

Figure 7 reveals that following the brief stimulation period (t=100) the weakly sensitive
tissue is left in what could be conceived as a pre-pattern consisting of a vague outline of a
smiley that then sharpens into the full smiley pattern at t=1000. The corresponding force
field profiles suggest a linear decoding strategy where each region of the pattern, namely the
skin, eyes, nose and mouth simply increasingly hyperpolarize without involving any intricate
mechanism of coordination. This is evident upon visual inspection when at t=100 the field
vectors point weakly to the features of the pattern, then at t=800 they all point to the
boundary since the cells there are the first ones to hyperpolarize, and finally at t=1000 when
all the features respectively hyperpolarize the field vectors immediately surrounding them
point towards them.

Figure 8 shows that the strongly sensitive model follows a very different strategy
compared to the weakly sensitive model above. The first difference can be observed in the
pattern left in the tissue at the end of stimulation (t=100) that bears no resemblance to the
smiley; in fact, the pattern in the bulk is just a monotonic pattern that increasingly
hyperpolarizes towards the center of the tissue. The more important difference is that the
rest of the simulation involves a stigmergic communication between the parts of the bulk
and the boundary that literally sculpts the features of the smiley through a sequence of what
we call “field bifurcation” steps. For instance, at t=700, as the cells at the center
hyperpolarized, the boundary cells directly to their left and right also hyperpolarized even

14



though the cells the top side of the boundary were more bound to hyperpolarize at t=100
(should they have followed a linear strategy they would have hyperpolarized first at t=700).
Notice that the cells in between them don’t hyperpolarize, resulting in a local bifurcation of
the field. The newly hyperpolarized cells further trigger cells in the top portion of the bulk to
hyperpolarize that then trigger other boundary cells and so on until the smiley is almost
complete at t=1000. For these reasons, we will henceforth refer to the weakly sensitive
patterning model as the ‘mosaic’ model and the strongly sensitive model as the ‘stigmergic’
model.

To test the hypothesis that bulk-boundary communication drives the patterning in the
stigmergic model but not in the mosaic model, we measured the following: 1) normalized
mutual information between the bulk and the boundary (Ml); 2) causal strength of
interactions flowing from the boundary to the bulk (CS); and 3) degree of deformity in the
pattern caused due to permutation of the boundary states (AD) in both models (details in
Methods). We found that both M1 and €S were indeed stronger in the stigmergic model, with
M1 about 3.5 times stronger and CS twice as strong, and whereas AD was on average about
44.5% for the stigmergic model but 0% for the mosaic model, meaning that perturbing the
boundary states resulting in significant developmental deformities in the former but not in
the latter (Table 1). We also measured RFC that was about thrice as strong in the stigmergic
model as in the mosaic model, suggesting that the bulk-boundary interaction is not only
higher but also more synergetic in the former.

It should be noted that the mosaic model required orders of magnitude stronger input
voltages (see Supplementary Material Figure S4). These conditions make sense because a
weakly sensitive model requires stronger external inputs to supply almost all of the
information about the target pattern (in the form of a pre-pattern), as it cannot leverage the
field strongly enough to complete the pattern. A higher field-sensitivity of a strongly sensitive
model, onthe other hand, allows it to rely on only weak externalinputs to bootstrap complex
patterns by utilizing the field as a scaffold. This facilitates the model to employ mechanisms
such as stigmergy that require minimal information to be supplied initially that may be
sufficient to prime the nonlinearity of the system to take over and guide it in the direction of
the desired outcome.

These results demonstrate that the bioelectric field can indeed allow the model to be
dynamically molded into complex patterns by priming its self-organization through transient
stimulation of only the boundary of the tissue, thus circumventing the need for
micromanagement that several contemporary interventional patterning methodologies
entail (e.g., ion channel modulation [70].
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Figure 7. Development of the face pattern in the mosaic model shown as a sequence of snap shots of the combined Veem
and force field profile. This model has the following fixed set of parameter values: R=4, G=0.05, W=10and B =0.0283.
The only values that were optimized using machine learning were the amplitudes and frequencies of the initial transient
stimulation. At t=0, the oscillatory stimulation is applied and continued until t=100. The full pattern is formed at t=1000.

The profile at an intermediate timepoint of t=800 is also shown. Lighter shades of the cells represent cells depolarized
potentials of about -5 mV and darker shades correspond to hyperpolarized potentials of about -55 mV. Red arrows indicate

force field vectors at the field grid points.
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Figure 8. Development of the face pattern in the stigmergic model shown as a sequence of snap shots of the combined
Vmem and force field profile. This model has the following fixed set of parameter values: R =4, G =0.05, W= 1000 and B =
0.0005. The only values that were optimized using machine learning were the amplitudes and frequencies of the initial
transient stimulation. At t=0, the oscillatory stimulation is applied and continued until t=100. The full pattern is formed at
t=1000. The profile at an intermediate timepoint of t=800 is also shown. Lighter shades represent cells depolarized
potentials of about -5 mV and darker shades correspond to hyperpolarized potentials of about -55 mV. Red arrows indicate
force field vectors at the field grid points.

L

0.716 4 0.001 0.2108 + 0.0003
CS(Boundary, Bulk) | \(:Pilai il 0.4689 + 0.0009

“ 44.5% + 0.8% 0%

“ 6.6% 2.5%

Table 1. Metrics showing the degree of bulk-boundary interactions, along with RFC, present in the stigmergic and mosaic
models.

The stigmergic patterning model fortuitously recapitulated key qualitative features of
Xenopus bioelectric facial prepattern development

Do the minimal vertebrate face patterning models described above have anything to
say about bioelectric prepattern development observed in real embryos? We compared
patterns from various stages of our models and actual Xenopus embryos [30] and found that
the stigmergic model indeed displayed qualitative resemblance to some of the key features




of the developmental sequence of the craniofacial bioelectric prepattern observed in the
embryo (Figure 9).

The Xenopus craniofacial bioelectric prepattern development goes through several
stages but we focus on the following features. The patterning sets off with a broad
hyperpolarized region appearing in the anterior central portion stretching down the middle
of the future face (yellow arrow in Figure SA), later thinning out (purple arrow in Figure 9B)
and splittinginto features representing the future nose and the mouth (green arrows in Figure
9C). This is followed by the inception of a “ring of fire” that spreads in the form of semicircles
around the left and right edges of the face (red arrows in Figure 9D), at the same time lighting
up the region of the future left eye (Figure 9E). These regionalization events are spatially but
not temporally matched by the patterning sequence displayed by the stigmergic model.
Specifically, the initiation of the sequence with the formation of the broadly hyperpolarized
nose region of Figure 9A is matched by a similar initiation in our model (yellow arrow in Figure
9a), with its later thinning out and splitting into two also matched by our model (purple and
green arrows in Figures 9b, 9c). Furthermore, the formation of the “ring of fire” with the
concomitant lighting up of the eye region are also matched by our model (Figures 9b, 9c).
Nonetheless, the timing of these events are not precisely matched. In particular, the ring of
fire and eye formation follow the nose-mouth splitting event in reality, whereas they happen
in parallelin our model (red arrows appear throughout).

Differences aside, the similarities are indeed striking and suggest the possibility that
general principles of bioelectric patterning may exist in embryogenesis, especially since we
didn’t design the model to match observed data nor did we optimize it to develop the
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patterns in a specific sequence. In particular, it suggests that morphogenesis may be
strongly constrained even by the relatively simple assumptions of our model.

Figure 9. Comparison between the pattern sequence of the stigmergic model and the actual sequence of bioelectric
prepattern development observed in frog embryos. The inner sequence connected by thick black arrows represents the
model and the outer sequence connected by thick grey arrows represents empirical data. Colored arrows in each image
represent specific patterning events. Matching colors in model versus reality indicate matching events. The black dashed
lines connecting pairs of model and empirical images indicate the existence of at least one matching event.

Methods

Model details

The bioelectric field model is a two-dimensional multicellular network where the
cells consist of simplified bioelectric circuits, are structurally connected via gap junctions
with a topographic (lattice) connectivity and are endowed with an electrostatic force field by
virtue of their charge content or equivalently Vnem (Figure 9). The core bioelectric model,
consisting of the cells equipped with a pair of generic voltage-gated polarizing and
depolarizing ion channels and voltage-gated gap junctional intercellular connectivity was
adopted from Refs [69,116]; no extracellular medium is assumed in this model. For the
model used in this paper, the conductance of the depolarizing channel, G;, was set to a fixed
value of 1.5 nS (nano Siemens) but modulated by a factor proportional to the difference
between the Vmem of the equilibrium potential of the depolarizing channel E;. While the
conductance of the polarizing channel, G, was voltage-gated in an analogous way, it was
also subject to further modulation by the electric field in a qualitatively similar way as
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voltage-gating (Figure 9). The joint action of the ion channels endow the cell with bistability,
allowing the Vnem to converge to one of two values, namely -5 mV and -55 mV separated by
an unstable equilibrium at -9 mV [69]. The gap junctions were gated in such a way that it is
most conductive when the V...m Of the cells it connects are the same and least conductive
when the difference is the most, allowing the tissue to spatial regionalization [69].

The above core bioelectric model was further furnished with an electric field as
follows. The 2D cellular lattice is enmeshed by a separate 2D “field lattice”: the cells are
interspersed with “field grid points” (small grey circles in Figure 9) where the fields emitted
from cells throughout the tissue aggregate (solid red arrows in Figure 9) and regulate the
bioelectric state of nearby cells. Though in reality every conceivable pointin the intercellular
space would constitute the field, we adopted the simplest approximation of it where each
cell is surrounded by just four grid points under the assumption that such a configuration
most optimally captures the spatial relationship between the field and the cells. Thus, if the
lattice dimensions of the cellular network are r X ¢, with the total number of cells equal to
n. = r*c, then the total number of field grid points would be equal to ny = (r+1)*(c+
1). The force vectors at each field grid point are computed and added as per Coulomb’s law
of electrostatics, where the charge content of a cell was calculated using its Vmem and
membrane capacitance. We additionally assumed that the relative permittivity of the
cytoplasm set to 107 [147-149]. Even though, in principle, every cell could contribute to the
net force at every field grid point, we allow the range of influence termed as the “field action
range” to vary as a parameter of the model (R) in order to accommodate the effects of “field
screening” [111](red dashed arrows in Figure 9). Specifically, only those cells within a
distance of V27R from a field grid point can influence it. Thus, if R = 1 only the immediately
neighboring cells influence a grid point and when R = 2m — 1, where m is the larger of the
two lattice dimensions then the whole tissue influences it.

The transduction mechanism by which the electric field around a cell regulates its
bioelectric state works as follows. When the average magnitude of the force vectors (black
dashed arrows in Figure 9), after being transformed by a weighted (W) sigmoid, exceeds a
threshold B the G, of the contained cell decreases resulting in its gradual depolarization;
below the threshold, G, increases, resulting in hyperpolarization. Thus, when B = 0 all the
cells depolarize and when B = oo the entire tissue hyperpolarizes. For intermediate values
of B, heterogenous mixtures of states can appear, with a typical convergent pattern
characterized by a set of hyperpolarized cells at the center of the tissue surrounded by
depolarized cells (Figure 3). This symmetry can however be broken by choosing a high W,
low B and an intermediate value of R that creates an optimal negative feedback relationship
between the field and Vnem, resulting in a continuous generation of novel patterns (see
Supplementary Material Movies $1-S3). In general, complex patterning requires a sufficient
degree of sensitivity to changes in the field that can be propagated through the tissue at
varying spatiotemporal rates. The transduction parameters that determine the strength of
field sensitivity are W and B. Accordingly, to better understand the effects of field sensitivity
on patterning, we classify the models into two broad categories: strongly sensitive (high W
and low B > 0) and weakly sensitive (low W and high B). The combination of field sensitivity
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strength and R result in different types of patterns with varying degrees and spatial
configuration of contrast, examples of which are shown in Figure 3.
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Figure 10. Mathematical description of the model with a mapping illustration of a two-cell version of the model shown for
clarity. Red arrows in the illustration indicate force field vectors at field grid points. The red dashed lines indicate the electric
field lines, with their weights representing the magnitude of field strength. The black dashed lines connecting field grid
points with the ion channels represent field transduction.

Model simulation

The initial conditions of the variables in each simulation were set as follows: v =-9.2
mV ande = 0 V/m for all cells; G, = 1.5G, for all cells; G, = P x G- where P was randomly
chosen from the range [0.0,2.0] for each cell in simulations with heterogenous initial
conditions, and set to a constant value of 1.0 for all cells in simulations with homogenous
initial conditions; G, = G * G,; G € [0.0,1.0] in all simulations except for the face patterning
models where ¢ was setto 0.05; R was varied inthe range [1,21] in all simulations except for
the face patterning models where it was set to 4; W was varied in the range [10,1000] in all
simulations except for the face patterning models where it was set to 10 for the mosaic
model and 1000 for the stigmergic model; B was varied in the range [0.0005,0.02] in all
simulations except for the face patterning models where it was set to 0.02 for the mosaic
model and 0.0005 for the stigmergic model. The model equations were integrated using the
standard Euler method with a fixed step size of 0.01 for about T steps where T was varied
between 500 and 5000 depending on the experiment.

Model analysis measures

The Tononi-Edelman-Sporns (TSE) measure of complexity is a measure of the balance
between integration and segregation contained in a dynamical system. It is defined as the
sum of mutual information between all possible subsets of a system and their respective
complements (bipartitions) of a system [130], mathematically expressed as:
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n/2

TSE(X) = ) (MI(XF; X — XF))

Itis equivalently stated as:
n/2

TSE(X) = Z[(H(X;‘)) — (k/m)H(X)]
k=1

Here, X refers to the system containing n elements, and X;‘ refers to the j* subset of size k.
The operator (.) refers to the average taken over all possible n!/(k! (n — k)!) combinations
of subsets containing k elements. The terms MI(.) and H(.) refer to mutual information and
Shannon entropy respectively [150]. TSE becomes zero in fully segregated systems where
the joint entropy of the system H(X) is equal to the sum of the entropies of its elements and
in fully integrated systems where the joint entropies of subsets are simply scaled versions of
the whole. Here we considered random samples of subsets due to the exponentially large
number of combinations of partitions for a system containing 121 elements (cells).
Specifically, we considered 50 equally spaced partition sizes in the range [2,120], and for
each partition size we considered 100 randomly samples subsets. We used the Python
package dit (short for discrete information theory [151]) for computing MI and H. Since they
are designed for binary data, we binarized all of the V..m timeseries generated by our model
by assigning a value of 0 t0 Vimem in the range [-40 mV, 0 mV] and a value of 1 10 Vmem values in
the range [-80 mV, -40 mV). We chose these ranges by observing that the Vn.m values
generated by our simulations typically varied within the range [-80 mV, 0 mV].

“Relative field compression” (RFC) is a measure of the ratio of the dimensionality of
the field to the dimensionality of Vmem Of the tissue. We defined the dimensionality of a
variable as the total variance explained by its first three PCA dimensions. Specifically, if we
denote the percentage variance explained by the first three PCA dimensions of the Viyem
timeseries as py, p5and p%, and the corresponding terms of the field as pf, p5and p5 then
RFC is defined as:

RFC = (pf + p5 +p3) — (p{ + 03 +p3)

“Field influence” (Fl) is a measure of the sensitivity of Vimem to the field, defined as the
mean rate of change of V...m Of a target cell at every step of the simulation with respect to
small changes in the electrostatic force of source field grid points at the beginning of the
simulation averaged over all source-target combinations and time:

T ng e avi(t = 'f)
r=12j=1 2i=1 3¢, (t = 0)
FI = g
T *n.*ng

Causal strength (CS) is a measure of the strength of interaction among the cells that
we first introduced in [152]. It is defined as the mean rate of change of Vnen Of target cells at
every step of the simulation with respect to small changes in the Vqem Of source cells at the
beginning of the simulation averaged over all source-target combinations and time:
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X5, CS()

CS =
nC
where:
Y7, €S0, ))
cs(i) ==—1=—=
where:
T ,cs(@i,j, T
£5(i,j) = 2 CSGAT)
T
where:
CS(i,j, 1) dv;(t = 1)
LLT) = 13—
avj (t=0)

Causal distance (CD) is a measure of the distance of the most causally influential
variablesin a system, defined as the mean distance of the top 5 cells in terms of their causal
strength averaged over all cells:

Y, CD(D)
n

CD =
C
where:

Y jetop 5 {¢s(i,j}) A0, )
nC
where, d (i, j) represents the Euclidean distance between cells i and j.

CD(i) =

For figures 4-6 we estimated FI,CS and CD rather than compute them exactly for
practical reasons by choosing 50 equally spaced points in the range [1, T|; and by choosing
three representative target cells with locations (0,0), (0,6) and (6,6) in the 11x11 lattice,
representing the cells at the corner, middle of the boundary and center of the tissue
respectively, thereby spanning the extremities of the tissue’s topography.

The normalized mutual information between the bulk and the boundary, MI1(Bo; Bu),
is ameasure of the proportion of correlation between the bulk and the boundary with respect
to the expected correlation between partitions of similar sizes. It is defined as the ratio of Ml
between the bulk and the boundary and the expected Ml between any bipartition of the
system where one partition is the same as the boundary and its complement naturally the

size of the bulk:
MI(Bo; Bu)

MI(Bo; Bu) =
(M1 (X% x = x 7))

Here the set of indices corresponding to the bulk is denoted as{Bu}, the set of indices
corresponding to the boundary {Bo}, the set of indices corresponding to a partition the size

of the boundary as {XJ!BOI} and its complement as {X — XjIBO'], with j referring to the index of

a single partition. To estimate ;’Tfﬁ'(Bo; Bu), we randomly sampled 100 bipartitions from a
possible n!/(|Bo|! (n — |Bo|)!) number of bipartitions.
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The normalized causal strength between the boundary and the bulk, CS(Bu, Bo), is a
measure of the proportion of the causal strength between the boundary and the bulk with
respecttothe expected causal strengths between partitions of similar sizes ata giveninstant
of time, averaged over all time points. The notations follow the same conventions as above.
As before, we estimated Ef'S‘(Bu, Bo), by randomly sampling 100 bipartitions from a possible
n!/(|Bo|! (n — |Bo|)!) number of bipartitions as well as by sampling T by choosing 50 equally
spaced points in the range [1,T];

T Yietpuy Ljepoy CS(LJ, T)
N T=1 (ZiE{X_X[B"'}ZjE[Xl.B"'}Cs(i’j’ 7))
CS(Bu,Bo) = J 7 4

Finally, AD is a measure of deformity in the output pattern caused due to differences
in the past boundary states. Specifically, let D be the Euclidean distance between the
observed pattern at the end of 1000 simulation steps and the target vertebrate face pattern.
Let D' be the Euclidean distance between the observed pattern at the end of 1000 simulation
steps following a transient perturbation and the target vertebrate face pattern. The
perturbation was at the end of the stimulation period (first 100 steps), when the G, values of
the cells at the boundary ofthe tissue (44 cellsinthe 11x11 lattice) were randomly permuted.
To compute the variation of the measure we ran a set of 100 simulations each consisting of
a unigue permutation of the boundary states.

Model optimization

We used machine learning techniques to optimize the oscillatory stimulation values
of the model required for generating a vertebrate face pattern (the model parameters were
fixed). The stimulation was applied on a set of 44 field grid points located on the boundary of
the tissue (Figures 7 and 8). However, since the target is bilaterally symmetrical (about the
vertical bisection axis) the stimulation values of only 22 points had to be learned, with the
other being a mirror reflection of the former. The stimulation values associated with each of
those points consisted of the amplitude, phase and frequency of the corresponding
oscillatory voltage input. The initial ranges associated with the variables set at the beginning
of the optimization were as follows: [100 mV, 500 mV] for the absolute value of the
amplitude; [0, 2] forthe phases; and [100 Hz, 1000 Hz] for the frequency. The learned values
ofthe amplitudes and frequencies were allowed step out of those initial ranges but the phase
was limited to the initial range. The stimulation period was set to the first 10% of the duration
of simulation during which the stimulated points were clamped with the corresponding input
voltage trains and the resulting force field vectors were computed at all the other field grid
points. We treated the stimulated field grid points as cells, so their “charges” were computed
using the applied voltage and the membrane capacitance of a cell. As for the specifics of the
machine learning algorithm, we used gradient descent, a method that updates the
parameters to be learned by taking a small step in the direction of the steepest descent
where the height of the parameter landscape represents performance (deeper points are
better) [146]. Here we used a specific form of gradient descent method known as “resilient
backpropagation” [153], which relies only on the sign (not the magnitude) of the gradients
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for updating the parameters at every iteration. For the cost function (performance), we used
the root mean squared distance between the observed patterns during the last 10% of the
simulation and the target face pattern.

Discussion

Our goal was to understand the role of a continuous (fluid) electrostatic force field in
the dynamic behavior of a discrete (solid) non-neural multicellular bioelectric network that
it permeates. Our investigations revealed that the field indeed enhances the patterning
capabilities of the network, as evidenced by its ability to regulate the pattern complexity,
dimensionality and causal catalysis of the spatial Vmem states. Our results support the
hypothesis that the field regulates V..m patterning by effectively turning into a control
parameter by virtue of its lower dimensionality and slower timescale compared to the spatial
Vmem State, despite the circular feedback between them, in a manner consistent with a
principle of synergetics in which fast variables are controlled by slow variables that
effectively act as control parameters [133]. We leveraged these results to prime the system
to develop specific target patterns simply by transiently stimulating the field surrounding the
boundary of the tissue. We used machine learning, specifically automatic differentiation
based gradient descent, to learn the oscillatory stimulation sequence and optimize a pair of
models with opposite field sensitivity strengths to generate a vertebrate face pattern. An
analysis of those models revealed that they developed the face patterns using very different
strategies, namely, a mosaic and stigmergy based mechanism depending on whether the
field sensitivity strength was weak or strong respectively. In summary, our work suggests that
the electrostatic field could indeed function as a key facilitator of voltage patterning in
embryonic tissues, thereby contributing to morphogenetic pre-patterning processes in real
biological systems. We interpret our results to further suggest that the electric field also can
have the potential to act as a top-down control knob that when tuned appropriately could
steer a real or synthetic biological system employing bioelectricity to generate desired
patterns.

Implications for morphogenesis

The field concept was originally proposed inthe early twentieth century as aresponse
tothe prevailing view at the time of predeterminism or “preformism” as explicated in Wilhelm
Roux’s “mosaic theory of development” that later became synonymous with genetic
determinism [11,14,154]. Proponents of the field concept argued that the properties of the
whole could not be deduced from the individual parts and that itis the relational organization
of the system that was key. This view was supported by Hans Driesch’s groundbreaking
embryo-cutting experiments [13] that essentially showed that the developmental fate of the
cells in an embryo should be attributed not only to their genetic states but also to their
spatiallocations in the tissue [10]. Thus, the concept of positional information was born and
along with it the general concept of the morphogenetic field that expressed informational
and regionalrelationships [15], the prototypical example of which is the morphogen gradient
or the “French flag” model as is popularly known [16]. Besides the conventional sources of
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positional information, such as biochemical and transcriptional gradients, patterns of
bioelectric potentials can also provide such information to the cells for appropriate
differentiation during development [15,155].

Here we found that adding a true field dynamic to a bioelectric patterning system can
enhance its capacity for emergent self-organization of morphogenetic prepatterns. Given
that prepatterning and positional information are deeply connected [18,156], this result has
implications for the developmental biology as it suggests that a bioelectric field basis of
morphogenesis is viable. Our model serves as a concrete example that illustrates several
ideas and hypotheses on the role of the field in morphogenesis that were articulated in the
early twentieth century. For instance, Alexander Gurwitsch found that describing the
outlines of an embryo is simpler than describing the details of its parts, a function that he
proposed was carried by some kind of field [13]. He moreover proposed that such a field was
constituted by the developing body itself that in turn was shaped and refined by the field, an
idea that was shared by Harold Burr as well [13]. Our model shows that the electrostatic field
could serve the role of the hypothetical field described in the early ideas, as it shares some
of the requisite properties of the field stated above. For instance, if we take any of the force
field profiles shown in Figure 7 or 8 and remove all the cells, leaving only the force vectors in
place, then one would see the outline of the face and not its parts. This picture would
become even more coarse-grained if one were to average those vectors with discrete
segments of the picture. This “blurring” property of the field is also compatible with its lower
dimensionality (Figure 5), as coarse-graining loses (redundant) information, a property that
supports Gurwitsch’s idea that it’s simpler to describe outlines than the details of an
embryo.

Our work goes further and shows that there may be more complex strategies for
developing prepatterns than what is known such as ‘French flag’ model [16], the ‘clock and
wavefront’ model [157] and even the somewhat complex hierarchical patterning models
[158]. Specifically, we show that it is possible to generate complex patterns by leveraging
stigmergic strategies that neither requires significant incipient information such as the
French flag model nor mechanisms of gradual complexification such as the hierarchical
model. Moreover, our finding that the stigmergic model required stimulation at biologically
plausible ranges (order of millivolts) suggests that evolution could exploit such a system for
endogenous control of morphogenesis. A related phenomenon has been suggested to occur
in early patterning of the left-right axis where cells on the ventral midline generate a
bioelectric gradient which then impacts the axial identity of cells throughout the body by
driving re-distribution of small molecule morphogens (likely serotonin) across the
embryonic field [35,159-161].

Ephaptic coupling and long distance communication

Neuronal cells have long been known to communicate not only through synaptic
coupling but also via electric field interactions known as “ephaptic coupling” [162]. These
interactions happen without any physical connectivity (the term “ephaptic” means
“touching”), and therefore they are often considered to be less pronounced compared to
other conventional means [162]. However, recent research has begun to unravel the
potential effects ephaptic coupling may have on a wide range of neural phenomena such as
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memory, cognition and even consciousness [99,100,102,126,163]. This has led to proposals
for including ephaptic coupling in modeling efforts, especially given the differential
propagation speed it offers over synaptic and biochemical routes [164] thus enabling a
Turing-like setting to facilitate patterning and development [165]. Our work is most closely
related to recent research that showcased the role of the electric field in establishing and
maintaining memory engrams by virtue of its lower dimensionality and higher stability
compared to neuronal activity [99-101]. Our minimal model exemplifies these ideas in anon-
neural setting (embryonic patterning), thereby demonstrating the potential substrate-free
ability of the electric field to regulate disparate phenomena.

Electric field mediated ephaptic coupling has the potential to facilitate long-distance
communication that has been hypothesized, and robustly demonstrated in some cases, to
play important roles in developmental phenomena such as neurulation, pigmentation,
morphogenetic patterning, craniofacial development, body axis establishment and even
cancer [135]. Moreover, long-distance communication facilitates the diagnosis as well as
treatment of injuries at a location that is spatially separated from the source [69,166]. Our
model serves as a minimal but concrete example demonstrating how long-distance
communication (controlled by the field range parameter) could facilitate morphogenetic
patterning and potentially in other aspects of development. Additionally, unlike other
models of long-distance communication [69,167,168] as well as reaction-diffusion based
patterning models [158,168], our model possesses a unique “hopping” property where an
activity source triggers distant parts of the tissue without setting off the cells enroute (Figure
8). The bioelectric face patterning in Xenopus embryos indeed displays such characteristics
(though it is not yet clear that they are causal) and there may be several other phenomenain
development with hopping characteristics requiring field-based explanations.

Limitations of the current study

In this work we developed and analyzed a minimal bioelectric field model of
morphogenetic patterning. Though we learnt several properties of this model it has certain
limitations that may prohibit us from extrapolating the results to real biological systems.
First, our model does not simulate the extracellular medium that could play a role in
morphogenesis by providing structural support, a medium for transmitting biochemical
signals and affecting a wide range of behaviors including cell polarity, adhesion and
migration [170]. The extracellular medium may contain charged particles that may limit the
penetration of the electric field into the tissue due to a phenomenon known as “charge
screening” [111]. Even though we partially address this issue by parameterizing the reach of
the field real biological tissues may possess additional complexities that might limit the role
of the electric field in patterning processes.

As our goal was to understand the phenomenological effects of including a true field
in a dynamical system, and not the physiological effects, we did not assume biophysically
realistic parameters in the model. For instance, we assumed the relative permittivity of the
cellas 107, a value we adopted from a wide range of values reported in the literature ranging
from a frequency-dependent value of 60 reported in Refs [171-173] to static permittivity
values ranging in 10 to 107 as reported in Refs [147-149]. Even though choice of this value
could significantly alter the results, it is possible that it could be compensated by another
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unknown mechanism thus preserving the broad character of our results. Lastly, we have not
included gene regulatory networks and a plethora of other biomolecular factors that could
in theory weaken or strengthen the modulatory effects of the field in vivo.

Biomedical applications and future directions

The regulatory role and therapeutic potential of bioelectricity during development
and regeneration has been demonstrated in numerous vertebrate and invertebrate models
(reviewed in [174]). The work on the Xenopus bioelectric face patterning, for instance, has
shown that disrupting the bioelectric pattern leads to craniofacial abnormalities [30], while
introducing components of the native electric face pattern into other regions induces the
formation of complex ectopic organs such as eye [36].

Moreover, targeted repair of the pattern can rescue defects induced by teratogens or
mutations [68,70,175,176]. Work in frog, flatworm, and Drosophila models have implicated
bioelectric prepatterns as instructive influences over gene expression and subsequent
anatomy. Future exploitation of this interface for therapeutic purposes requires the ability to
impose desired complex patterns on tissues, and to understand what kinds of influences
could disrupt the processes of morphogenesis in the context of birth defects and failures to
regenerate after damage. Having established several qualitative similarities with the
observed real developmental sequence (Figure 9), our stigmergic model made a new
prediction that disrupting the bioelectric state of the boundary alone could also result in
craniofacial abnormalities of tissues inside it. This prediction along with the result that the
most causally influential cells are not the spatially closest ones, especially in optimal
patterning models (Figure 6), suggests that the field may better facilitate therapeutic and
biomedical interventions by providing alternatives to invasive procedures. Moreover, we
found that the strongest causal influence does not necessarily stem from the nearest cells
but sometimes emanates from cells further away. This may have implications for surrogate
site diagnostics and interventions on deep tissues that exert their influence from a more
easily-accessed location. We plan to test these hypotheses in future experimental work.

Predicting downstream outcomes by intervening into upstream processes
constitutes what is known as the “forward problem” [177]. There is another much harder to
solve class of problems known as the “inverse problem” where the goal is to find upstream
states given downstream states [177,178]. It is known that linear encodings of morphology,
such as fate maps and prepatterns, are easierto derive for given desired target morphologies
due to the property called “invertibility”, something that nonlinear encodings such as gene
expression patterns do not possess making them notoriously difficult to solve [178]. By
leveraging machine learning techniques, especially automatic differentiation based gradient
descent, our work offers a potential solution to the inverse problem by inferring encodings
(initial conditions) in a field-based dynamical model of morphogenesis that would
temporally unfold and decode into the associated target patterns. It is noteworthy that the
method underlying our approach has been famously used for the optimization of neural
network inputs (not model parameters) to generate hallucinatory images in computer
programs such as Google’s ‘deep dream’ [179]. In future work we plan to exploit this
technological capability to guide the patterning of real and synthetic biological systems.
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Traditional electrode applications make it very difficult to induce predictable,
complex patterns of stable resting potentials in non-excitable cells. However, our model
suggests that taking the field into account, it may be possible to design stimulation that
results in desired bioelectric distributions in tissue. If this bears out in vivo, it would be a
significant addition to the current toolbox of electroceuticals and wearable bioreactors
[180,181] addressing birth defects, regeneration, cancer reprogramming [26,61] and the
bioengineering of multicellular living constructs [182-185].
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